Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-12-06
Forward-Looking Imaging of Scanning Phased Array Radar Based on the Compressed Sensing
By
Progress In Electromagnetics Research, Vol. 143, 575-604, 2013
Abstract
In this paper, a novel forward-looking imaging method based on the compressed sensing is proposed for scanning phased array radar (PAR) in order to improve the azimuth resolution,. Firstly, the echo of targets is modeled according to the principle of PAR. Then, it is analyzed why some of the former methods as multi-channel deconvolution are ineffective based on the signal model. Using a widely accepted assumption that dominant scatterers in an interesting area are sparse or compressible, an imaging algorithm based on the compressed sensing is proposed and investigated. This method obtains its high range resolution by transmitting and compressing chirp pulse signal, and improves its azimuth resolution by utilizing the compressed sensing technique. The effectiveness of the proposed method is illustrated and analyzed with simulations data.
Citation
Xiaoyang Wen, Gangyao Kuang, Jiemin Hu, Ronghui Zhan, and Jun Zhang, "Forward-Looking Imaging of Scanning Phased Array Radar Based on the Compressed Sensing," Progress In Electromagnetics Research, Vol. 143, 575-604, 2013.
doi:10.2528/PIER13101804
References

1. Berens, Dr., P., "Introduction to synthetic aperture radar (SAR)," Advanced Radar Signal and Data Processing, 2006.

2. Ouchi, K., "Recent trend and advance of synthetic aperture radar with selected topics," Remote Sensing, No. 5, 716-807, 2013.
doi:10.3390/rs5020716

3. Sun, J. P., Y. X. Zhang, J. H. Tian, et al. "A novel spaceborne SAR wide-swath imaging approach based on poisson disk-like nonuniform sampling and compressive sensing ," Science China, Vol. 55, No. 8, 1876-1887, August 2012.

4. Palash, J. and K. R. Sarma, "Azimuth triangulation method for forward looking synthetic aperture radar," International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 1, No. 3, 106-109, March 2013.

5. An, D. X., An, D. X., X. T. Huang, T. Jin, et al. "Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing ," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 9, 3595-3609, Sept. 2012.
doi:10.1109/TGRS.2012.2183606

6. Nam, S., J. S. Lee, and J. S. Ha, "Antenna aperture design scheme for the bistatic forward looking SAR application," IEEE the 3rd International Asia-Paci¯c Conference on Synthetic Aperture Radar (APSAR), 1-4, Sept. 2011.

7. Witte, F., T. Sutor, and R. Scheunemann, "A new sector imaging radar for enhanced vision --- SIREV," Proceedings of the SPIE Conference in Enhanced and Synthetic Vision, Vol. 3364, 115-122, April 1998.

8. Sutor, T., S. Buckreuss, G. Krieger, et al. "Sector imaging radar for enhanced vision (SIREV): Theory and applications," Proceedings of SPIE in Enhanced and Synthetic Vision, Vol. 4023, 292-297, June 2000.

9. Mittermayer, J., M. Wendler, G. Krieger, et al. "Sector imaging radar for enhanced vision (SIREV): Simulation and processing techniques ," Proceedings of SPIE in Enhanced and Synthetic Vision , Vol. 4023, 298-305, June 2000.

10. Krieger, G., J. Mittermayer, M. Wendler, et l., and , "SIREV-sector imaging radar for enhanced vision," Proceedings of the 2nd International Symposium in Image and Signal Processing and Analysis , 377-382, 2001.

11. Ren, X. Z., J. T. Sun, and R. L. Yang, "A new three-dimensional imaging algorithm for airborne forward-looking SAR," IEEE Geosci. Remote Sens. Letts., Vol. 8, No. 1, 153-157, January 2011.
doi:10.1109/LGRS.2010.2055035

12. Purik, D., S. H. Han, S.-G. Sun, et al. "2D frequency domain imaging algorithms for forward looking array radar," Proceedings of the 9th European Radar Conference, 22-25, October 2012.

13. Mahafza, B. R., D. L. Knight, and N. F. Audeh, "Forward-looking SAR imaging using a linear array with transverse motion," IEEE Proceedings in Southeastcon, 4-7, April 1993.

14. Xiang, G., X. L. Zhang, J. Shi, et al. "Airborne 3-D forward looking SAR imaging via chirp scaling algorithm," Geoscience and Remote Sensing IEEE International Symposium --- IGARSS, 3011-3014, July 2011.

15. Peng, X., W. Tan, Y. Wang, W. Hong, and Y. Wu, "Convolution back-projection imaging algorithm for downward-looking sparse linear array three dimensional synthetic aperture radar ," Progress In Electromagnetics Research, Vol. 129, 287-313, 2012.

16. Sun, S. G., G. C. Park, B. L. Choe, et al. "Forward-looking 3D imaging radar and method for acquiring 3D images using the same," US Patent Application, Patent No: US 8471759 B2, June 2013.

17. Zheng, Y. B., S.-M. Tseng, and K.-B. Yu, "Closed-form four-channel monopulse two-target resolution," IEEE Trans. on Aero. Elec. Syst., Vol. 39, No. 3, 1083-1089, July 2003.
doi:10.1109/TAES.2003.1238760

18. Stimson, G. W., Introduction to Airborne Radar, SciTech Pub., 1998.

19. Liu, G. Q., K. Yang, B. Sykora, et al. "Range and azimuth resolution enhancement for 94 GHz real-beam radar," Proceedings of SPIE on Radar Sensor Technology XII, Vol. 6947, 1-9, 2008.

20. Bouchard, C., D. Grenier, and Dr., "ISAR imaging radar with time-domain high-range resolution algorithms and array antenna," Laboratoire de Radiocommunications et de Traitement du Signal, 1997.

21. Deng, W. B. and Z. Bao, "Radar imaging based on rotating antenna," 1988 International Conference on Acoustics, Speech, and Signal Processing, ICASSP-88, Vol. 2, 1196-1199, April 1988.

22. Li, W., J. Yang, and Y. Huang, "Keystone transform-based space-variant range migration correction for airborne forward-looking scanning radar ," Electronics Letters, Vol. 48, No. 2, 121-122, January 2012.
doi:10.1049/el.2011.2774

23. Browne, K. E., R. J. Burkholder, and J. L. Volakis, "A novel low-pro¯le portable radar system for high resolution through-wall radar imaging ," 2010 IEEE Radar Conference, 333-338, May 2010.
doi:10.1109/RADAR.2010.5494602

24. Berenstein, C. A. and E. V. Partick, "Exact deconvolution for multiple convolution operators --- An overview, plus performance characterizations for imaging sensors," Proceedings of the IEEE, Vol. 78, No. 4, 723-734, April 1990.
doi:10.1109/5.54810

25. Richards, M. A., "Iterative noncoherent angular superresolution," Proceedings of the 1988 IEEE National Radar Conference, 100-105, April 1988.
doi:10.1109/NRC.1988.10940

26. Suwa, K. and M. Iwamoto, "Forward looking radar imaging method using multiple receiver antennas and digital beam forming technique ," Proceedings. 2005 IEEE Geoscience and Remote Sensing Symposium, IGARSS'05, Vol. 6, 4041-4044, July 2005.
doi:10.1109/IGARSS.2005.1525801

27. Ruggiano, M., E. Stolp, and V. Genderen, "Improvement of target resolution in azimuth by LMMSE technique," 2009 European Radar Conference, 230-233, Sept 2009.

28. McIntosh, J. C., A. Kennedy, and C. Clary, "Scanned time/angle correlation: A new method for super-resolution," Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery XII, Vol. 5808, 95-101, 2005.
doi:10.1117/12.604087

29. Sun, J., Sun, J., S. Mao, and G. Wang, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

30. Wu, J., Z. Li, Y. Huang, Q. H. Liu, and J. Yang, "Processing one-stationary bistatic SAR data using inverse scaled fourier transform ," Progress In Electromagnetics Research, Vol. 129, 143-159, 2012.

31. Espeter, T., I. Walterscheid, J. Klare, et al. "Bistatic forward-looking SAR: Results of a spaceborne-airborne experiment," IEEE Trans. on Geosci. Remote Sens. Letts., Vol. 8, No. 4, 765-768, July 2011.
doi:10.1109/LGRS.2011.2108635

32. Wu, J. J., Wu, J. J., Z. Y. Li, Y. L. Huang, et al. "Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling ," IEEE Geosci. Remote Sens. Letts., No. 99, May 2013.

33. Li, W. C., Y. L. Huang, J. Y. Yang, et al. "An improved radon-transform-based scheme of doppler centroid estimation for bistatic forward-looking SAR ," IEEE Geosci. Remote Sens. Letts., Vol. 8, No. 2, 379-383, March 2011.
doi:10.1109/LGRS.2010.2078485

34. Shin, H.-S. and J.-T. Lim, "Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging," IEEE Geosci. Remote Sens. Letts., Vol. 6, No. 2, 312-316, April 2009.
doi:10.1109/LGRS.2008.2011924

35. Walterscheid, I., Walterscheid, I., T. Espeter, J. Klare, et al. "Potential and limitations of forward-looking bistatic SAR," 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 216-219, July 2010.
doi:10.1109/IGARSS.2010.5653210

36. Walterscheid, I., Walterscheid, I., A. R. Brenner, and J. Klare, "Radar imaging with very low grazing angles in a bistatic forward-looking configuration ," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) , 327-330, July 2012.
doi:10.1109/IGARSS.2012.6351571

37. Qiu, D. H. Hu, and C. B. Ding, Qiu, X. L., D. H. Hu, and C. B. Ding, "Some reflections on bistatic SAR of forward-looking configuration," IEEE Geosci. Remote Sens. Letts., Vol. 5, No. 4, 735-739, October 2008.
doi:10.1109/LGRS.2008.2004506

38. Nguyen, N., P. Milanfar, and G. Golub, "A computationally e±cient superresolution image reconstruction algorithm," IEEE Trans. on Image Proc., Vol. 10, No. 4, 573-583, April 2001.
doi:10.1109/83.913592

39. Vogel, C. R. and M. E. Oman, "Fast, robust total variation-based reconstruction of noisy, blurred images," IEEE Trans. on Image Proc., Vol. 7, No. 6, 813-824, June 1998.
doi:10.1109/83.679423

40. Candµes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, March 2008.
doi:10.1109/MSP.2007.914731

41. Patel, V. M., G. R. Easley, D. M. Healy, et al. "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, April 2010.
doi:10.1109/JSTSP.2009.2039181

42. Fang, J., Z. B. Xu, B. C. Zhang, et al. "Fast compressed sensing SAR imaging based on approximated observation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , No. 99, 1-12, May 2013.
doi:10.1109/JSTARS.2013.2263309

43. Alonson, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 12, 4285-4295, December 2012.

44. Qu, Y., G. Liao, S.-Q. Zhu, and X.-Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301

45. Mailloux, R. J., Phased Array Radar, 2nd Ed., Artech House, 2005.

46. Zhang, L., M. D. Xing, C. W. Wiu, et al. "Resolution enhancement for inversed synthetic aperture radar imaging under low snr via improved compressive sensing," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, October 2010.
doi:10.1109/TGRS.2010.2048575