Vol. 57
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-12-01
Large Signal Field Analysis of a Linear Beam Traveling Wave Amplifier for a Sheath-Helix Model of the Slow-Wave Structure Supported by Dielectric Rods. Part 2: Neumerical Results
By
Progress In Electromagnetics Research B, Vol. 57, 105-114, 2014
Abstract
Numerical computation of induced surface current density, power gain, conversion efficiency, optimum interaction length and harmonic generation etc. pertaining to large-signal operation of a linear beam travelling wave tube amplifier (TWTA) employing a dielectric-loaded sheath helix model for the slow-wave structure based on the large-signal theory developed in Part 1 of this paper is presented, and comparison with the results of other large-signal theories and available experimental evidence is made.
Citation
Natarajan Kalyanasundaram, and Amita Agnihotri, "Large Signal Field Analysis of a Linear Beam Traveling Wave Amplifier for a Sheath-Helix Model of the Slow-Wave Structure Supported by Dielectric Rods. Part 2: Neumerical Results," Progress In Electromagnetics Research B, Vol. 57, 105-114, 2014.
doi:10.2528/PIERB13100303
References

1. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., 2005.

2. Kalyanasundaram, N., "Large signal field analysis of an O-type traveling wave amplifier. Part 1: Theory," IEE Proc. I, Solid-State & Electron Dev., Vol. 131, No. 5, 145-152, 1984.
doi:10.1049/ip-i-1.1984.0040

3. Kalyanasundaram, N. and R. Chinnadurai, "Large signal field analysis of an O-type traveling wave amplifier. Part 2: Numerical results," IEE Proc. I, Solid-State & Electron Dev., Vol. 133, No. 4, 163-168, 1986.
doi:10.1049/ip-i-1.1986.0031

4. Rowe, J. E., Nonlinear Electron-wave Interaction Phenomena, Academic Press, 1965.

5. Detweiler, H. K. and J. E. Rowe, "Electron dynamics and energy conversion in O-type linear beam devices ," Advances in Microwaves 6, 29-123, 1971.

6. Hughes Aircraft Company, Electron Dynamics Division TWT and TWTA Handbook, 1975.

7. Gewartowski, J. W. and H. A. Watson, Principles of Electron Tubes, Van Nostrand, 1968.