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Large Signal Field Analysis of a Linear Beam Traveling Wave
Amplifier for a Sheath-helix Model of the Slow-wave Structure

Supported by Dielectric Rods. Part 2: Numerical Results

Natarajan Kalyanasundaram* and Amita Agnihotri

Abstract—Numerical computation of induced surface current density, power gain, conversion efficiency,
optimum interaction length and harmonic generation etc. pertaining to large-signal operation of a linear
beam travelling wave tube amplifier (TWTA) employing a dielectric-loaded sheath helix model for the
slow-wave structure based on the large-signal theory developed in Part 1 of this paper is presented, and
comparison with the results of other large-signal theories and available experimental evidence is made.

1. INTRODUCTION

In Part 1 of this paper, a rigorous method of analysing the large-signal behaviour of a linear beam
traveling wave tube amplifier (TWTA) with the slow-wave structure modeled by a dielectric-loaded
sheath helix was presented starting from the governing equations of classical electrodynamics. A key
step in the analysis was an expansion of the steady-state beam current density in a Fourier-series in the
time variable and a representation of the ‘Fourier coefficients’ as nonlinear functionals of the electron
arrival time through a Green’s function sequence for the slow-wave structure. With a view to identifying
the form of the Green’s functions, the field components were also expanded in Fourier series in the time
variable, the Fourier coefficients being now functions only of the spatial co-ordinates. Substituting
the Fourier-series expansions for the field components and the beam-current density into Maxwell’s
equations and solving the resulting nonhomogeneous boundary value problem with the help of a second
Fourier-series expansion in the axial coordinate, the Green’s functions for the slow-wave structure were
determined. Using the Green’s function representation of the axial electric field component inside the
beam as a nonlinear functional of the electron arrival time, the problem was reduced to one of solving
for the electron arrival time as the fixed point of a nonlinear (integral) operator equation in a function
space by the method of successive approximations.

The numerical computation of the TWTA characteristics to be taken up in this part will be based
on the above double Fourier-series representation (in the time variable and the axial coordinate) of the
particular solution for the axial electric and magnetic field components truncated at the third temporal
harmonic (i.e., m ≤ M = 3) and the 64th spatial harmonic (i.e., |n| ≤ N = 64). The computations are
carried out for an operating frequency f0 of 6 GHz and the dimensionless interaction length d varying
between 120 and 160 in steps of 2. For the above choices of the operating frequency and the interaction
length, the resonance condition is not even approximately satisfied by any of integer pairs (m, n) with
1 ≤ m ≤ 3 and bma1/kdc + 1 ≤ n ≤ 64, where for any real number X, bXc denotes its integer part.
Hence the need for using the alternate expressions for the particular solution developed in Appendix B
of Part 1 does not arise. The equations of this part will be numbered consecutively from those of Part 1
and also the notation of Part 1 will be employed.
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2. ELECTRON ARRIVAL TIME, EXIT SPEED AND AXIAL ELECTRIC FIELD

The truncated double Fourier series for the axial electric field component can be written from (41) in a
form suitable for numerical work as

E1(z, r, t) =
M∑

m=1

[E1m(z, r) exp(jmt) + c.c.] (46a)

E1m(z, r) = δ1mAI0(τ1r) exp(−jβ1z)/2I0(τ1) + (q0/πa1d)[Fsm(z, r) + jFcm(z, r)]/2m

m = 1, 2, 3 . . . , M (46b)

Flm(z, r) =
N∑

n=0

(2−δn0)[Flmn(r) cos(nkdz)−Flmn(1)Wm(r) cos(βmz)]

l = s, c (46c)

Flmn(r) =

a∫

0

Gmn(r, y)flmn(y)ydy l = s, c (46d)

fsmn(y) =
∫ d

0
cos(nkdx)dx

∫ π

−π
sin mt(x, y, τ)dτ (46e)

fcmn(y) =
∫ d

0
cos(nkdx)dx

∫ π

−π
cos mt(x, y, τ)dτ (46f)

where the electron arrival time t(z, r, t0), of course, satisfies the nonlinear integral Equation (43).
The following (constant) values of input-signal parameters and beam parameters will be used in

the numerical computation of the TWTA characteristics.
The (unique) roots of the dielectric-loaded sheath-helix dispersion Equation (29) re-expressed in

the form

τmI0(τm)/I1(τm) + τ̃m∆m10(1)/∆m11(1)=(ma1 cotψ/a2)2 (I1(τm)/τmI0(τm)+εeff ∆m01(1)/τ̃m∆m00(1))

for the renormalized propagation phase constants βma ∆βm/a2, m = 1, 2, 3, are β1a = 9.3098,
β2a = 18.56305, β3a = 27.80771, where k0a∆a1/a2 = ω0ā/c and the simpler expressions for τm and
τ̃m in terms of βma and k0a are

τ2
m(r) = (β2

ma −m2k2
0a)

1/2 and τ̃m(r) = (β2
ma −m2k2

0aεeff )1/2

For the choice a1 = v0/c = vp/c = k0a/β1a = 0.135055, that ensures perfect synchronism between the
electron beam and the traveling electromagnetic wave at the input plane, the corresponding values of
a2 and βm, m = 1, 2, 3, are a2 = 0.107422, β1 = 1.00, β2 = 1.99408, β3 = 2.98716. We observe that
βm < mβ1, m = 1, 2, 3, attesting to the dispersive nature of the slow waves supported by a dielectric-
loaded sheath-helix. Neglecting the relativistic variation of electron mass with speed, the value of the
anode voltage required to accelerate the electrons (emitted from the cathode with zero initial speed) to
an axial speed of v0 = 0.135055c works out to be V0 = 4.66 kV.

A parameter α, defined by

α ∆ 10 log10(Pin/Pdc) (47)

will now be introduced for describing the numerical results of this paper. In the above definition

Pin = πA2
0ā

2Y0P11 (48)

is the input-signal power (assuming it to be that due to a forward-propagating cold wave at the input-
signal frequency) and Pdc = V0I0 is the ‘dc’ power of the beam. The expression for the non-dimensional
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quantity P11 appearing in (48) is

P11 =(1/2)




(
β1a1/τ2

1 a2
2

) {
I2
1 (τ1)/I2

0 (τ1) + 2I1(τ1)/τ1I0(τ1)− 1
}− (β1 tanψ/a1)

{
I2
0 (τ1)/I2

1 (τ1)
−2I0(τ1)/τ1I1(τ1)− 1}+

(
β1a1εeff /τ̃2

1 a2
2

) {1 + 2∆101(1)/τ̃1∆100(1)
−(∆101(1)/∆100(1))2 + τ̃−2

1 ∆−2
100(1)

}− (
β1 tan2 ψ/a1

) {1− 2∆110(1)/τ̃1∆111(1)
−(∆110(1)/∆100(1))2 + τ̃−2

1 ∆−2
111(1)

}


 (49)

For the parameter values of Table 1 and the truncation orders of M = 3 and N = 64, the nonlinear
integral Equation (43) is iteratively solved on a PC for the electron arrival time t(z, r, t0) making use of
the representation (46) for the axial electric field component inside the beam, and the results showing
the behaviour of the arrival time t(d, r, t0) of electrons at the output plane and the exit electron speed

v(d, r, t0) = 1/tz(d, r, t0) =
{

1− 2ε

∫ d

0
E1(s, r, t(s, r, t0))ds

}1/2

as functions of the entrance time t0 are plotted in Figs. 1(a) and 2(a) for r = 0 (beam axis) and in
Figs. 1(b) and 2(b) for r = a (beam boundary) for the values of d = 120 and α = −50 dB, −40 dB,
−30 dB and −20 dB.

It is observed from Fig. 1 that t(z, r, t0) is a monotonically increasing function of t0 for α = −50 dB,
but not so for α = −40 dB, −30 dB and −20 dB. This observation is in conformity with the well-known
fact that electron overtaking is the rule if the input-signal power is sufficiently large. It is also seen from
Fig. 1 that electrons entering the interaction region over a period of the input signal undergo a net

Table 1. Parameter values of the TWTA.

Description Notation Numerical value
Operating frequency f0 = ω0/2π 6 GHz

Input-signal phase factor A = ejθ 1
Sheath-helix pitch angle Ψ 10◦

Sheath-helix radius ā 1 cm
Outer-conductor radius b̄ 2.24 cm

Effective dielectric
constant of support rods

εeff 2.25

Beam current I0 60 mA
Beam radius ā0 0.5 cm

(b)(a)

Figure 1. (a) Variation of electron arrival time with entrance time t0, for r = 0 and d = 120.
(b) Variation of electron arrival time with entrance time t0, for r = a and d = 120.
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retardation or acceleration to varying amounts, relative to their unperturbed trajectories, depending
on their entrance time, their radial position and input-signal level. The relative number of electrons in
the retarded category and the maximum phase lag (∆ max

−π≤t0<π
θ(d, r, t0)) are seen in general, to increase

with the input-signal level. Here θ(d, r, t0) ∆ t(d, r, t0)− t0 is the dimensionless transit time.
It may be observed from the plots of exit electron speed in Figs. 2(a) and 2(b) that both the negative

(a) (b)

Figure 2. (a) Variation of dimensionless exit electron speed with entrance time for r = 0 and d = 120.
(b) Variation of dimesionless exit electron speed with entrance time for r = a and d = 120.

(a) (b)

(c)

Figure 3. (a) Build-up of fundamental and second harmonic components of axial electric field with
distance along the axis for r = 0, α = −20 dB and d = 120. (b) Build-up of fundamental and second
harmonic components of axial electric field with distance along the axis for r = a, α = −20 dB and
d = 120. (c) Build-up of fundamental and second harmonic components of axial electric field with
distance along the axis for r = 1, α = −20 dB and d = 120.
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as well as the positive deviation of the exit electron speed from the entrance electron speed over a period
of the input signal increases with input-signal level, the negative deviation tending to dominate over
the positive deviation with an increase in the input signal level. Moreover, the perturbation of the exit
electron speed from the entrance speed tends to be larger for the peripheral electrons than for the axial
electrons.

Graphs showing the build-up of the first two harmonics of the axial electric field component as
given by the normalized Fourier-coefficient magnitudes Ê1m(z, r)∆|E1m(z, r)/E11(0, r)|, m = 1, 2, are
plotted in Fig. 3 for the parameter values d = 120, α = −20 dB, and r = 0 (beam axis), a (beam
boundary) and 1 (helix boundary).

It is seen from Fig. 3 that the second harmonic field is smaller by at least two orders of magnitude
than the fundamental field all through the interaction region. A comparison of the three curves of
Fig. 3, for m = 1, also reveals that the strongest interaction between the electron beam and the
electromagnetic field takes place near the beam axis; the interaction becomes the weakest at the beam
boundary and grows once again progressively stronger as the helix boundary is approached. Radial
variation of the normalized fundamental axial electric field component Ẽ11(z, r)∆|E11(z, r)/E11(z, 1)|
at the planes z = 0, d/2 and d for the same parameter values are plotted in Fig. 4. It is clear from the
figure that the radial variation of the axial electric field component is not affected to any significant
extent by the axial position at which the field is evaluated.

3. INDUCED CURRENT DENSITY

The density of the surface current flowing along the sheath helix may be evaluated using the boundary
condition on the tangential component of the magnetic field across a discontinuity. This condition
together with the fourth of sheath-helix boundary conditions (19a) enables the mth (m = 1, 2, 3)
Fourier-coefficient Jsm(z) of the surface current density component along the direction of infinite
conductivity on the sheath helix normalized with respect to its value at z = 0 to be expressed as

Jsm(z) = [H1m(z, 1−)−H1m(z, 1+)]/[H11(0, 1−)−H11(0, 1+)] (50)
From (24b), (38b), (31b), (33), (35b) and (39), the discontinuity in H1m(z, r) at the helix boundary
may be estimated to be
H1m(z, 1−)−H1m(z, 1+) = (−ja2 tanψ/2a1)δ1m [τ1I0(τ1)/I1(τ1) + τ̃1∆110(1)/∆111(1)] exp(−jβ1z)

+
(
q0a2 tanψ/2πm2a2

1d
)
{

N∑

n=0

(2−δ0n){pmnC0(pmn)/C1(pmn)+p̃mn∆mn10/∆mn11}(hcmn−jhsmn)cos(nkdz)

−{τmI0(τm)/I1(τm) + τ̃m∆m10(1)/∆m11(1)} cos(βmz)

(
N∑

n=0

(2− δ0n)(hcmn − jhsmn)

)}
(51)

Figure 4. Radial variation of axial electric field
component for d = 120 and α = −20 dB.

Figure 5. Variation of fundamental surface
current density magnitude with axial distance for
α = −20 dB and d = 150.
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where

himn(r)∆Λ−1
mn

a∫

0

(C0(pmny)/C0(pmn)) fimn(y)ydy, i = c, s

the functions C0(.) and C1(.) are defined in (36) and we have set input-signal phase factor
A = ejθ = ej0 = 1. Thus the computation of the surface current density induced on the slow wave
structure is seen to be quite straightforward.

The variation in magnitude of the surface-current density Js1(z) with axial distance z is plotted
in Fig. 5 for d = 150 and α = −20 dB. The near-exponential build-up of the surface-current density
with interaction distance can be easily made out from Fig. 6 which shows the behaviour of ReJs1(z)
with z for the same values of d and α. Fig. 6 also puts into evidence the traveling nature of
the interaction between the electron beam and the electromagnetic field since ReJs1(z) represents a
snapshot of the surface current density wave |Js1(z)| cos(t − θs1(z)) evaluated at time t = 0 where
tan(θs1(z)) = ImJs1(z)/ReJs1(z).

Figure 6. Variation of real part of the fundamental component of induced current density with axial
distance for α = −20 dB and d = 150.

4. POWER GAIN AND CONVERSION EFFICIENCY

With a view to formulating suitable definitions for these two parameters, consider a coaxial cylinder of
radius b with end faces Si and So at the input and the output planes of the helix, and the lateral surface
Sl at r = b coincident with the inner surface of the outer perfectly conducting circular cylindrical shell.
Taking the output power Pout to be the net (time-averaged) power flowing out through the output end
face So of this cylinder (there will not be any power flow through the lateral surface Sl) and the input
power Pin to be the net power flowing into the cylinder through the input end face Si, the total power
gain gtot and the total conversion efficiency ηtot may be defined respectively as

gtot∆Pout/Pin and ηtot∆(Pout − Pin)/Pdc = (Pout − Pin)/V0I0

Applying the Poyinting theorem [1] to the volume bounded by Si ∪ Sl ∪ S0, it is seen that

P ∆ Pout − Pin =
∞∑

m=1

4π ā2A2
0Y0Pm

Here Y0 = 1/Z0 is the intrinsic admittance of free space and

Pm = −Re
∫ d

0

∫ a

0
E1m(z, r)i∗m(z, r)rdrdz

= −δ1m(q0/2πd) sin(β1d/2)

[
N∑

n=0

(2−δ0n)
(
β1/

(
β2

1 − n2k2
d

))
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×
a∫

0

(cos(β1d/2)f1nc(r)+sin(β1d/2)f1ns(r)) (I0(τ1r)/I0(τ1)) rdr


 + (q0/2πd)2(βm/ma1) sin(βmd)

×
{(

N∑

n=0

(2− δ0n)λmns/Λmn

)(
N∑

n=0

(2− δ0n)µmnc/
(
β2

m − n2k2
d

)
)

−
(

N∑

n=0

(2− δ0n)λmnc/Λmn

) (
N∑

n=0

(2− δ0n)µmns/
(
β2

m − n2k2
d

)
)}

(52)

where

λmni ∆

a∫

0

(C0(pmny)/C0(pmn))fmni(y)ydy, i = c, s

µmni(r) ∆

a∫

0

(I0(τmy)/I0(τm))fmni(y)ydy, i = c, s

(a) (b)

(c)

Figure 7. (a) Variation of fundamental power gain with normalized interaction length for α =
−20 dB. (b) Variation of fundamental power gain with normalized interaction length for α = −30 dB.
(c) Variation of power gain with input power for α = −20 dB and d = 135.
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and symmetry of the partial Green’s function Gmn(r, y), that is Gmn(r, y) = Gmn(y, r) for (r, y) ∈
[0, a]× [0, 1], has been used to verify that there is no contribution from double integrals of the form∫ a

0

∫ a

0
Gmn(r, y)[fmns(r)fmnc(y)− fmnc(r)fmns(y)]rdrydy

to Pm. From (48), the (fundamental) power gain g1 can be expressed as

g1∆(4π ā2A2
0Y0P1 + Pin)/Pin = 1 + 4P1/P11 (53)

where P11 is defined by (49). Similarly, the conversion efficiency for mth harmonic may be expressed as

ηm = (4πā2A2
0Y0Pm/V0I0) = (4Pm/P11)10(2+0.1α)%, m = 1, 2, 3 (54)

The variation of the fundamental power gain g1 with the normalized interaction length d for
α = −20 dB and α = −30 dB are shown in Figs. 7(a) and 7(b) respectively. It may be seen from
these figures that the power gain attains flat maxima at about d = 134 for an input signal level of
α = −20 dB and at about d = 150 for α = −30 dB, the corresponding values of saturation gains being
about 23 dB and 34 dB respectively. These observations lend credence to the anticipated behaviour
of the optimum interaction length and the saturation power gain, namely, values of both parameters
increase as the input-signal level is decreased. The variation of the fundamental power gain g1 with
input power level α for d = 135 is plotted in Fig. 7(c) which shows a monotonic decrease in power
gain as the input-signal power is increased with the decay rate coming down from a large value near
α = −50 dB to a very small value near α = −20 dB.

(a) (b)

(c)

Figure 8. (a) Variation of fundamental conversion efficiency with normalized interaction length for
α = −20 dB. (b) Variation of fundamental conversion efficiency with normalized interaction length for
α = −30 dB. (c) Variation of fundamental and second harmonic conversion efficiency with input power
for d = 135.
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The variation of the fundamental conversion efficiency η1 with normalized interaction length d for
α = −20 dB and α = −30 dB is shown in Figs. 8(a) and 8(b) respectively. It may be seen from these
plots that the fundamental conversion efficiency attains flat maxima at about d = 134 for an input
signal level of α = −20 dB and at about d = 150 for α = −30 dB, the corresponding values of saturation
efficiencies being about 60% and 50% respectively. It should come as no surprise that the optimal value
of the interaction length at which power-gain curve as well as the efficiency-curve attains its maximum
turn out to be identical for the same value of the input-signal level α. This is because the efficiency η1

(as a percentage) and the power gain g1 (in dB) are related by

η1 = f(g1, α) =
(
100.1 g1 − 1

)
10(2+0.1α)

where f is seen to be a monotonically increasing function of g1 for a fixed α.
The variations of the fundamental and the second harmonic conversion efficiencies η1 and η2 with

α for d = 135 are shown in Fig. 8(c) (Note that η2 is plotted in a scale which is magnified 104 times the
scale for η1). As expected, both η1 and η2 exhibit a near-exponential increase with respect to the input
signal power; however, the second harmonic efficiency η2 is at least four orders of magnitude smaller
than the fundamental conversion efficiency η1. In view of the fact that the contribution of the harmonics
generated by the nonlinear electron-wave interaction in a linear beam TWTA to the output power is
imperceptibly small, it is possible to retain only the component at the input-signal frequency in the
temporal Fourier-series representation of the convection current density i(z, r, t) and the electromagnetic
field components Ek(z, r, t) and Hk(z, r, t), k = 1, 2, 3, without incurring any significant loss in accuracy.

5. CONCLUDING COMMENTS

An examination of the results presented in this paper in light of the results of the large-signal field theory
of an open sheath helix [2, 3] and other large-signal non-field theories [4, 5] and available experimental
evidence [6] lead to the following conclusions.

(i) The values of the saturation power gain and the conversion efficiency compare very favourably with
those predicted by large-signal non-field theories [4, 5] and the experimentally observed values [6].
The unusually small values of these parameters obtained in [3] for the open sheath-helix model of
the slow-wave structure may be attributed to the power loss due to the presence of ‘radiating terms’
(associated with Hankel functions in the Fourier-series representation of the particular solution for
the field components valid in the unbounded region exterior to the open sheath helix).

(ii) There exists an optimum interaction length, which is a function of the parameter values and the
input-signal level, for a linear beam TWTA as in the case of a klystron amplifier [7].

(iii) A linear beam TWTA is a very poor harmonic generator and consequently a very poor frequency
converter even under large-signal conditions. Thus the harmonic distortion introduced by a linear
beam TWTA with the slow-wave structure modeled by a dielectric-loaded sheath helix is negligibly
small even when operating at large signal levels.

(iv) Since the power gain vs. normalized interaction length curves of Figs. 7(a) and 7(b) may be
interpreted as frequency-response curves of the power gain for a TWTA (with a fixed interaction
length of course) designed for operation around a centre frequency fc corresponding to the
normalized interaction length dopt for a specified value of the peak gain, the flatness of the maximum
in the frequency curve of TWTA implies that the TWTA is capable of broadband operation (i.e.,
with negligible frequency distortion over the essential bandwidth of the input signal) around the
centre frequency when the (actual) interaction length is chosen to be d̄ = v0dopt/2πfc.

In addition to the sheath-helix model of the slow-wave structure being incompatible with the actual
coupling arrangements employed in a practical TWTA to carry r.f. power into and out of the tube,
necessitating the unconventional definitions of power gain and conversion efficiency adopted in this
paper, possible reflection of the traveling electromagnetic wave from the collector end has been totally
neglected in the present analysis. In view of these shortcomings, the numerical values of the TWTA
parameters like power gain, conversion efficiency, optimum interaction length etc., arrived at on the
basis of the large-signal field theory presented in Part 1 may not match exactly with those measured
experimentally.
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The present analysis may be routinely extended to the case of a finite-duration input signal using
a Fourier-series representation of the input signal over its time duration. However, if the TWTA has
been designed for operation with maximum gain at the fundamental frequency (reciprocal of the signal
duration), then the higher harmonics components will get amplified to progressively lower levels resulting
in an output signal that has been subjected to severe frequency distortion.
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