Vol. 143
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-11-08
Enhanced Design of Narrowband Filters Based on the Extraordinary Transmission through Single Fishnet Structures
By
Progress In Electromagnetics Research, Vol. 143, 349-368, 2013
Abstract
A systematic method for the efficient design of narrowband filters founded on the extraordinary transmission via single fishnet structures (SFSs) is presented in this paper.~Essentially, due to its strong resonant behavior, this phenomenon is proven suitable for the implementation of high-$Q$ devices.~The new design formulas are derived through the combination of full-wave numerical simulations and curve fitting algorithms. Also, adequate mathematical criteria are defined for the evaluation of the filters' linear performance, indicating that the transmitted electromagnetic waves remain practically undistorted in the frequency band of interest. Then, by exploiting the previously developed relations, proper correction factors are introduced in the existing SFS equivalent circuit expressions, which hardly increase the overall computational complexity. This quantitative modification leads to an enhanced characterization of SFSs, as key components for diverse applications. Finally, several limitations as well as possible ways of extending the featured algorithm to more complicated structures and higher frequency bands are briefly discussed.
Citation
Nicholas S. Nye, Alexandros I. Dimitriadis, Nikolaos V. Kantartzis, and Theodoros Tsiboukis, "Enhanced Design of Narrowband Filters Based on the Extraordinary Transmission through Single Fishnet Structures," Progress In Electromagnetics Research, Vol. 143, 349-368, 2013.
doi:10.2528/PIER13100205
References

1. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 1-4, 2005.

2. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, No. 18, 11536-11541, 2007.
doi:10.1364/OE.15.011536

3. Navarro-Cia, M., M. Beruete, F. Falcone, M. Sorolla Ayza, and I. Campillo, "Polarization-tunable negative/positive refraction in self-complementariness-based extraordinary transmission prism ," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108

4. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

5. Guo, J., Y. Xiang, X. Dai, and S. Wen, "Enhanced nonlinearities in double-fishnet negative-index photonic metamaterials," Progress In Electromagnetics Research, Vol. 136, 269-282, 2013.

6. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces --- A review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
doi:10.1002/0471723770

8. Navarro-Cia, M., M. Beruete, F. Falcone, J. Illescas, I. Campillo, and M. Sorolla Ayza, "Mastering the propagation through stacked perforated plates: Subwavelength holes vs. propagating holes," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2980-2988, 2011.
doi:10.1109/TAP.2011.2158957

9. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7--8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

10. bbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

11. Song, J. F. and R. Proietti Zaccaria, "Manipulation of light transmission through sub-wavelength hole array," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 9, S450-S457, 2007.
doi:10.1088/1464-4258/9/9/S28

12. Ren, X. F., G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, "Remote control of extraordinary transmission through subwavelength hole arrays," Europhys. Lett., Vol. 84, No. 3, 1-4, 2008.
doi:10.1209/0295-5075/84/30005

13. Ghaemi, H. F., T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes ," Phys. Rev. B, Vol. 58, No. 11, 6779-6782, 1998.
doi:10.1103/PhysRevB.58.6779

14. Vallius, T., J. Turunen, M. Mansuripur, and S. Honkanen, "Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons," J. Opt. Soc. Am. A, Vol. 21, No. 3, 456-463, 2004.
doi:10.1364/JOSAA.21.000456

15. Lalanne, P., J. C. Rodier, and J. P. Hugonin, "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 8, 422-426, 2005.
doi:10.1088/1464-4258/7/8/013

16. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries ," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

17. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. MartIn-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, 2004.
doi:10.1364/OL.29.002500

18. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays ," Phys. Rev. Lett., Vol. 86, No. 6, 1114-1117, 2001.
doi:10.1103/PhysRevLett.86.1114

19. Garcia de Abajo, F. J., R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays ," Phys. Rev. E, Vol. 72, No. 1, 1-4, 2005.
doi:10.1103/PhysRevE.72.016608

20. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

21. Rudnitsky, A. S. and V. M. Serdyuk, "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of finite thickness placed in front of a half-infinite dielectric," Progress In Electromagnetics Research, Vol. 86, 277-290, 2008.
doi:10.2528/PIER08092605

22. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

23. Pendry, J. B., L. MartIn-Moreno, and F. J. GarcIa-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999

24. Quevedo-Teruel, O., "Controlled radiation from dielectric slabs over spoof surface plasmon waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013.

25. Medina, F., F. Mesa, and R. Marques, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective ," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3108-3120, 2008.
doi:10.1109/TMTT.2008.2007343

26. Marques, R, F. Mesa, L. Jelinek, and F. Medina, "Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes," Opt. Express, Vol. 17, No. 7, 5571-5579, 2009.
doi:10.1364/OE.17.005571

27. Marques, , R., L. Jelinek, F. Mesa, and F. Medina, "Analytical theory of wave propagation through stacked fishnet metamaterials," Opt. Express, Vol. 17, No. 14, 11582-11593, 2009.
doi:10.1364/OE.17.011582

28. Beruete, M., M. Navarro-Cia, and M. Sorolla Ayza, "Understand-ing anomalous extraordinary transmission from equivalent circuit and grounded slab concepts," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 9, 2180-2188, 2011.
doi:10.1109/TMTT.2011.2160076

29. Medina, F., J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marques, "Experimental verification of extraordinary transmission without surface plasmons," Appl. Phys. Lett., Vol. 95, No. 7, 1-3, 2009.
doi:10.1063/1.3206738

30. Garcia de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys., Vol. 79, No. 4, 1267-1290, 2007.
doi:10.1103/RevModPhys.79.1267

31. Engheta, N., A. Salandrino, and A. Alu, "Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors ," Phys. Rev. Lett., Vol. 95, No. 9, 1-4, 2005.

32. Huang, C. P., X. G. Yin, H. Huang, and Y. Y. Zhu, "Study of plasmon resonance in a gold nanorod with an LC circuit model," Opt. Express, Vol. 17, No. 8, 6407-6413, 2009.
doi:10.1364/OE.17.006407