Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-11-01
Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial
By
Progress In Electromagnetics Research, Vol. 143, 243-261, 2013
Abstract
A compact chiral metamaterial is proposed and comprehensively investigated that can achieve circularly polarized wave emission from linearly polarized incident wave (giant circular dichroism) over dual bands and near Diodelike asymmetric transmission of linearly polarized waves. The chiral metamaterial also features exceptionally strong optical activity. For verification, two proof-of-concept slab samples are designed, fabricated and measured at microwave frequencies. Numerical and experimental results agree well, indicating that the former dual-band circular polarizer features high conversion efficiency around 8.1 and 9.9 GHz in addition to large polarization extinction ratio of more than 16 dB, while the latter chiral sample enables the near 90% cross-polarization transmission in one direction and almost 10% transmission in the opposite direction. The block "meta-atom" that utilized to build the ultrathin CMM slab is less than λ0/6.73 evaluated at operating frequency. Good performances of the two chiral slabs with simple and compact package suggest promising applications in the circular polarizers (circulators) and transparent linear polarization transformers or spectrum filters (isolators) that need to be interpreted with other compact devices.
Citation
He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Tong Cai, "Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009
References

1. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M.Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, 1593-1595, 2010.
doi:10.1364/OL.35.001593

2. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.
doi:10.1364/OE.16.011802

3. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401

4. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
doi:10.1126/science.1104467

5. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407

6. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3052-3062, Nov. 2007.
doi:10.1109/TAP.2007.909419

7. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173

8. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

9. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semiplanar chiral metamaterial structures," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5768-5776, 2012.
doi:10.1109/TAP.2012.2214015

10. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Appl. Phys. Lett., Vol. 94, 131901, 2009.
doi:10.1063/1.3109780

11. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. TÄunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

12. Huang, C., Y. Feng, J. Zhao, Z.Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

13. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.
doi:10.1007/s00339-013-7546-1

14. Shi, J. H., Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, "Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial," J. Appl. Phys., Vol. 112, 073522, 2012.
doi:10.1063/1.4757961

15. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905

16. Gansel, J. K., G.M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031

17. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2457-2459, 2010.
doi:10.1109/TAP.2010.2048874

18. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, "Metallic helix array as a broadband wave plate," Phys. Rev. Lett., Vol. 107, 177401, 2011.
doi:10.1103/PhysRevLett.107.177401

19. Zhao, Y., M. A. Belkin, and A. Alµu, "Twisted optical metamate-rials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
doi:10.1038/ncomms1877

20. Ye, Y., X. Li, F. Zhuang, and S.-W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
doi:10.1063/1.3615054

21. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, 1653-1655, 2011.
doi:10.1364/OL.36.001653

22. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050

23. Xu, H.-X., G.-M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 21, No. 21, 24912-24921, 2013.
doi:10.1364/OE.21.024912

24. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
doi:10.1063/1.4794940

25. Chin, J. Y., J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, "An effcient broadband metamaterial wave retarder," Opt. Express, Vol. 17, 7640-7647, 2009.
doi:10.1364/OE.17.007640

26. Ye, Y. and S. He, "90 polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
doi:10.1063/1.3429683

27. Song, K., X. P. Zhaoa, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14--15, 1967-1976, 2012.
doi:10.1080/09205071.2012.723673

28. Song, K., Y. H. Liu, Q. Fu, X. P. Zhao, C. R. Luo, and W. R. Zhu, "90 polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express, Vol. 21, 7439-7446, 2013.
doi:10.1364/OE.21.007439

29. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, 051909, 2012.
doi:10.1063/1.3682591

30. Shi, J. H., H. F. Ma, W. X. Jiang, and T. J. Cui, "Multiband stereometamaterial-based polarization spectral filter," Phys. Rev. B, Vol. 86, 035103, 2012.
doi:10.1103/PhysRevB.86.035103

31. Zari, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

32. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904

33. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108

34. Xu, H.-X., G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, "Triple-band polarization-insensitive wide-angle ultraminiature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 205104, 2012.
doi:10.1103/PhysRevB.86.205104

35. Xu, , H.-X., G.-M. Wang, M. Q. Qi, L. Li, and T. J. Cui, "Three-dimensional super lens composed of fractal left-handed materials," Adv. Opt. Mater., Vol. 1, 495-502, 2013.
doi:10.1002/adom.201300023

36. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magnetics, Vol. 49, No. 4, 1526-1529, 2013.
doi:10.1109/TMAG.2012.2230272

37. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211