Department of Electronics and Communication Engineering
Birla Institute of Technology
India
HomepageDepartment of Electronics and Communication Engineering
Birla Institute of Technology
India
Homepage1. Reaney, I. M. and D. Iddles, "Microwave dielectric ceramics for resonators and filters in mobile phone networks," J. Am. Ceram. Soc., Vol. 89, 2063-2072, 2006.
2. Cava, R. J., "Dielectric materials for applications in microwave communications," J. Mater. Chem.,, Vol. 11, 54-62, 2001.
doi:10.1039/b003681l
3. Rajput, S. S., S. Keshri, V. R. Gupta, N. Gupta, V. Bovtun, and J. Petzelt, "Design of microwave dielectric resonator antenna using MZTO-CSTO composite," Ceramics International, Vol. 38, No. 3, 2355-2362, 2012.
doi:10.1016/j.ceramint.2011.10.088
4. Hunter, C., L. Billonet, B. Jarry, and P. Gullion, "Microwave filters-applications and technology," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 3, 794-805, 2002.
doi:10.1109/22.989963
5. Rajput, S. S. and S. Keshri, "Structural, vibrational and microwave dielectric properties of (1 ¡ x)Mg0:95Co0:05TiO3 ¡ (x)Ca0:8Sr0:2TiO3 ceramic composites," J. Alloys Compd., Vol. 581, 223-229, 2013.
doi:10.1016/j.jallcom.2013.05.225
6. Luk, K. M. and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press Ltd., 2002.
7. Fechine, P. B. A., R. S. T. Moretzsohn, R. C. S. Costa, J. Derov, J. W. Stewart, A. J. Drehman, C. Junqueira, and A. S. B. Sombra, "Magneto-dielectric properties of the Y3Fe5O12 and Gd3Fe5O12 dielectric ferrite resonator antennas ," Microwave Opt. Technol. Lett., Vol. 50, No. 11, 2852-2857, 2008.
doi:10.1002/mop.23824
8. Parida, S., S. K. Rout, N. Gupta, and V. R. Gupta, "Solubility limits and microwave dielectric properties of Ca(ZrxTi1¡x)O3 solid solution," J. Alloys Compd., Vol. 546, 216-223, 2013.
doi:10.1016/j.jallcom.2012.08.076
9. Parida, S., S. K. Rout, V. Subramanian, P. K. Barhai, N. Gupta, and V. R. Gupta, "Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(ZrxTi1¡x)O3 ceramics," J. Alloys Compd., Vol. 528, 126-134, 2012.
doi:10.1016/j.jallcom.2012.03.047
10. Louzir, A., P. Minard, and J. F. Pintos, "Parametric study on the use of magneto-dielectric materials for antenna miniaturization," IEEE Antennas and Propagation Society International Symposium (APSURSI), Vol. 978, No. 1, 1-4, 2010.
11. Hansen, R. C. and M. Burke, "Antennas with magneto-dielectrics," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 75-78, 2000.
doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W
12. Albuquerque, A. S., J. D. Ardisson, W. A. A. Macedo, and M. C. M. Alves, "Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism," J. Appl. Phys., Vol. 87, 4352-4357, 2000.
doi:10.1063/1.373077
13. Goldman, A., "Magnetic ceramics (ferrites). In: Engineered materials handbook --- `Ceramics and glasses'," ASM International, The Materials Information Society, Vol. 4, 1161, 1991.
14. Ebnabbasi, K., M. Mohebbi, and C. Vittoria, "Coaxial line technique to measure constitutive parameters in magnetoelectric ferrite materials," IEEE Micro. Wireless Comp. Letters, Vol. 23, No. 9, 504-506, 2013.
doi:10.1109/LMWC.2013.2273033
15. Ebnabbasi, K., M. Mohebbi, and C. Vittoria, "Strong magnetoelectric coupling in hexaferrites at room temperature," J. Appl. Phys., Vol. 113, 17C707-1-17C707-3, 2013.
16. Souriou, D., J. L. Mattei, A. Chevalier, and P. Queffelec, "Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization," J. Appl. Phys., Vol. 107, 09A518, 2010.
17. Ebnabbasi, K., M. Mohebbi, and C. Vittoria, "Magnetoelectric effects at microwave frequencies on Z-type hexaferrite," App. Phy. Letters, Vol. 101, 062406-1-062406-3, 2012.
18. Ebnabbasi, K., Y. Chen, A. Geiler, V. Harris, and C. Vittoria, "Magneto-electric effects on Sr Z-type hexaferrite at room temperature," J. Appl. Phys., Vol. 111, 07C719-1-07C719-3, 2012.
19. Mohebbi, M., "K. Ebnabbasi, and C. Vittoria, In-situ deposition of C-axis oriented barium ferrite films for microwave applications," IEEE Trans. on Magn., Vol. 49, No. 7, 4207-4209, 2013.
doi:10.1109/TMAG.2013.2250491
20. Adam, J. D., S. V. Krishnaswamy, S. H. Talisa, and K. C. Yoo, "Thin-film ferrites for microwave and millimeter-wave applications," J. Magn. Magn. Mater., Vol. 83, No. 1--3, 419-424, 1990.
doi:10.1016/0304-8853(90)90570-G
21. Yang, G.-M., J. Lou, O. Obi, and N. X. Sun, "Novel compact and low-loss phase shifters with magnetodielectric disturber," IEEE Micro. Wireless Comp. Letters, Vol. 21, No. 5, 240-242, 2011.
doi:10.1109/LMWC.2011.2123085
22. Kong, L. B., Z. W. Li, G. Q. Lin, and Y. B. Gan, "Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design," IEEE Trans. on Magn., Vol. 43, No. 1, 6-10, 43.
doi:10.1109/TMAG.2006.886321
23. Yang, G. M., "Tunable miniaturized RF devices on magneto-dielectric substrates with enhanced performance," Northeastern University, Apr. 2010.
24. Mohit, K., V. R. Gupta, N. Gupta, and S. K. Rout, "Structural and microwave characterization of Ni0:2CoxZn0:8¡xFe2O4 for antenna applications," Ceramics International, Vol. 40, 1575-1586, 2014.
doi:10.1016/j.ceramint.2013.07.045
25. Teo, M. L. S., L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, "Development of magneto-dielectric materials based on Li-ferrite ceramics: II. DC resistivity and complex relative permittivity," J. Alloy Compd., Vol. 459, 567-575, 2008.
doi:10.1016/j.jallcom.2007.05.082
26. Slick, P. I., "Ferromagnetic Materials,", Vol. 2, 196.
27. Albuquerque, A. S., J. D. Ardisson, W. A. A. Macedo, and M. C. M. Alves, "Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism," J. Appl. Phys., Vol. 87, 4352-4357, 2000.
doi:10.1063/1.373077
28. Pathan, A. N., K. Sangshetti, and A. A. G. Pangal, "Synthesis, characterisation and magnetic studies of Co0:4Zn0:4¡XCuXFe2O4 nanoparticles," Nanotechnology and Nanoscience, Vol. 1, No. 1, 8-12, 2010.
29. Su, H., X. Tang, H. Zhang, Z. Zhong, and J. Shen, "Sintering dense NiZn ferrite by two-step sintering process," J. Appl. Phys., Vol. 109, 07A501, 2011.
30. Su, H., X. Tang, H. Zhang, Y. Jing, F. Bai, and Z. Zhong, "Low-loss NiCuZn ferrite with matching permeability and permittivity by two-step sintering process," J. Appl. Phys., Vol. 113, 17B301, 2013.
31. Naser, M. G., E. B. Saion, M. Hashim, A. H. Shaari, and H. A. Ahangar, "Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method," Solid State Communications, Vol. 151, 1031-1035, 2011.
doi:10.1016/j.ssc.2011.04.018
32. Joseyphus, R. J., C. N. Chinnasamy, B. Jeyadevan, A. Kasuya, K. Shinoda, A. Narayanasamy, and K. Tohji, "Synthesis of ferrite nanoparticles through aqueous process for biomedical applications," Proceedings, 1st International Workshop on Water Dynamics Tohoku University, 51-53, Mar. 2004.
33. Todaka, Y., M. Nakamura, S. Hattori, K. Tsuchiya, and M. Umemoto, "Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill," Materials Transactions, Vol. 44, 277-284, 2003.
doi:10.2320/matertrans.44.277
34. Li, S., L. Liu, V. T. John, C. J. O'Connor, and V. G. Harris, "Cobalt-ferrite nanoparticles: Correlations between synthesis procedures, structural characteristics and magnetic properties," IEEE Trans. on Magn., Vol. 37, 2350-2352, 2001.
35. Raval, A. M., N. R. Panchal, and R. B. Jotania, "Structural studies of co-spinel ferrite synthesized by an auto combustion method," Journal of Analytical Techniques, Vol. 1, 01-02, 2010.
doi:10.5355/JAST.2010.1
36. Christou, A. and J. F. Crider, "The strengthening of Ti-55 at. % Ni by formation of a Ti2Ni3 intermetallic phaseJournal of materials science," J. Material Sc., Vol. 7, No. 4, 479-480, 1972.
doi:10.1007/BF02403415
37. Munir, Z. A., "Synthesis of high temperature materials by self-propagating combustion method," Fenmo Yejin Jishu/Powder Metallurgy Technology, Vol. 6, No. 1, 1-24, 1988..
38. Sutka, A. and G. Mezinskis, "Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials," Front. Mater. Sci., Vol. 6, 128-141, 2012.
doi:10.1007/s11706-012-0167-3
39. Thant, A. A., S. Srimala, P. Kaung, M. Itoh, O. Radzali, and M. N. Ahmad Fauzi, "Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites," J. Australian Ceram. Soc., Vol. 46, 11-14, 2010.
40. Huang, C.-L., J.-J. Wang, and C.-Y. Huang, "Sintering behavior and microwave dielectric properties of nano alpha-alumina," Materials Letters, Vol. 59, 3746-3749, 2005.
doi:10.1016/j.matlet.2005.06.053
41. Huang, C.-L., J.-J. Wang, and C.-Y. Huang, "Microwave dielectric properties of sintered alumina using nano-scaled powders of a Alumina and TiO2," J. Am. Ceram. Soc., Vol. 90, 1487-1493, 2007.
doi:10.1111/j.1551-2916.2007.01557.x
42. Zahi, S., "Synthesis, permeability and microstructure of the optimal nickel-zinc ferrites by sol-gel route," J. Electromagnetic Analysis & Applications, Vol. 2, 56-62, 2010.
doi:10.4236/jemaa.2010.21009
43. Goldman, A., Modern Ferrite Technology, Van Nostrand Reinhold, 1990.
44. Slemon, G. R., Magnetoelectric Devices, Wiley, 1966.
45. Bae, S. Y., H. J. Jung, C. S. Kim, and Y. J. Oh, "Magnetic properties of sol-gel derived Ni-Zn ferrite thin films," J. de Phys. IV JP, Vol. 8, No. 2, 261-264, 1998.
46. Lee, J. S., B. I. Lee, and S. K. Joo, "Effects of process parameters on structure and magnetic properties of sputtered Ni-Zn ferrite thin films," IEEE Trans. on Magn., Vol. 35, 3415-3417, 1999.
47. Qian, Z., G. Wang, J. M. Sivertsen, and J. H. Judy, "Ni-Zn ferrite thin films prepared by facing target sputtering," IEEE Trans. on Magn., Vol. 33, 3748-3750, 1997.
doi:10.1109/20.619559
48. Kiyomura, T. and M. Gomi, "Room-temperature epitaxial growth of Ni-Zn ferrite thin films by pulsed laser deposition in high vacuum," Jpn. J. Appl. Phys. Part 2: Lett., Vol. 36, L1000-L1002, 1997.
doi:10.1143/JJAP.36.L1000
49. Verma, A. and D. C. Dube, "Processing of nickel-zinc ferrites via the citrate precursor route for high-frequency applications," J. Am. Ceram. Soc., Vol. 88, 519-523, 2005.
doi:10.1111/j.1551-2916.2005.00098.x
50. Nakamura, T., "Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra," J. Magn. Magn. Mater., Vol. 168, 285-291, 1997.
doi:10.1016/S0304-8853(96)00709-3
51. Rahman, I. Z. and T. T. Ahmed, "A study on Cu substituted chemically processed Ni-Zn-Cu ferrites ," J Magn Magn Mater., Vol. 290--291, 1576-1579, 2005.
doi:10.1016/j.jmmm.2004.11.250
52. Aphesteguy, J. C., A. Damiani, D. D. Giovanni, and S. E. Jacobo, "Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites," Physica B, Vol. 404, No. 18, 2713-2716, 2009.
doi:10.1016/j.physb.2009.06.065
53. Mohit, K., S. K. Rout, S. Parida, G. P. Singh, S. K. Sharma, S. K. Pradhan, and I. W. Kim, "Structural, optical and dielectric studies of NixZn1¡xFe2O4 prepared by autocombustion route," Physica B, Vol. 407, 935-942, 2012.
doi:10.1016/j.physb.2011.12.003
54. Cullity, B. D., Element of X-ray Diffraction, 2nd Ed., Wesley Publication Company Inc., 1978.
55. Smit, J. and H. P. J. Wijn, "Ferrites," John Wiley, 1959.
56. Hakki, B. W. and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Trans. on Microw. Theory Tech., Vol. 8, No. 4, 402-410, 1960.
doi:10.1109/TMTT.1960.1124749
57. Courtney, W. E., "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Trans. on Microw. Theory and Tech., Vol. 18, No. 8, 476-485, 1970.
doi:10.1109/TMTT.1970.1127271
58. Sebastian, M. T., Dielectric Materials for Wireless Communication, Elsevier Publication, 2008.
59. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 16, R1-R16, 2005.
60. Krupka, J., K. Derzakowski, B. Riddle, and J. B. Jarvis, "A dielectric resonator for measurements of complex permittivity of low loss materials as a function of temperature," Meas. Sci. Technol., Vol. 9, 1751-1756, 1998.
doi:10.1088/0957-0233/9/10/015
61. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, "Microwave Electronics: Measurement and Materials Characterization," John Wiley & Sons Ltd., 2004.
62. Kobayashi, Y. and S. Tanaka, "Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates," IEEE Trans. on Microw. Theory and Tech., Vol. 28, No. 10, 1077-1085, 1980.
doi:10.1109/TMTT.1980.1130228
63. Parida, S., S. K. Rout, L. S. Cavalcante, E. Sinha, M. S. Li, V. Subramanian, N. Gupta, V. R. Gupta, J. A. Varela, and E. Longo, "Structural refinement, optical and microwave dielectric properties of BaZrO3," Ceramics International, Vol. 38, No. 3, 2129-2138, 2012.
doi:10.1016/j.ceramint.2011.10.054
64. Moreira, M. L., P. G. C. Buzolin, V. M. Longo, N. H. Nicoleti, J. R. Sambrano, M. S. Li, J. A. Varela, and E. Longo, "Joint experimental and theoretical analysis of order-disorder effects in cubic BaZrO3 assembled nanoparticles under decaoctahedral shape ," J. Phys. Chem. A., Vol. 115, 4482-4490, 2011.
doi:10.1021/jp1119124
65. Kobayashi, Y. and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Trans. on Microw. Theory and Tech., Vol. 33, No. 7, 586-592, 1985.
doi:10.1109/TMTT.1985.1133033
66. Afsar, M. N., J. R. Birch, and R. N. Clarke, "The measurement of the properties of materials," IEEE Trans. on Microw. Theory and Tech., Vol. 25, No. 1, 183-199, 1977.
67. De Paula, A. L., M. C. Rezende, and J. J. Barroso, "Experimental measurements and numerical simulation of permittivity and permeability of teflon in X band," J. Aerosp.Technol. Manag. Sao Jose dos Campos., Vol. 3, No. 1, 59-64, 2011.
doi:10.5028/jatm.2011.03019410
68. Kajfez, D. and P. Guillon, Dielectric Resonators, , The Artech House Microwave Library, 1986.
69. Petosa, A., A. Ittipiboon, Y. M. M. Antar, and D. Roscoe, "Recent advances in dielectric-resonator antenna technology," IEEE Antennas Propag. Mag., Vol. 40, 35-48, 1998.
doi:10.1109/74.706069
70. Junker, G. P., A. W. Glisson, and A. A. Kishk, "Input impedance of dielectric resonator antennas top loaded with high permittivity and conducting disks," Microw. Opt. Technol. Lett., Vol. 9, 204-207, 1995.
doi:10.1002/mop.4650090412
71. Junker, G. P., A. A. Kishk, A. W. Glisson, and D. Kajfez, "Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna," Electron. Lett., Vol. 30, 177-178, 1994.
doi:10.1049/el:19940191
72. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. on Antenna and Propag., Vol. 45, No. 9, 1348-1356, 1997.
doi:10.1109/8.623123
73. Peng, Z., H. Wang, and X. Yao, "Dielectric resonator antennas using high permittivity ceramics," Ceramics International, Vol. 30, 1211-1214, 2004.
doi:10.1016/j.ceramint.2003.12.079
74. Luk, K. M. and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press Ltd., 2002.
75. Kumari, R., K. Parmar, and S. K. Behera, "Conformal patch fed stacked triangular dielectric resonator antenna for wlan applications," IEEE Int. Conf. Emerging Trends in Robotics and Comm.Tech. , 104-107, Dec. 2010.
76. Grabovickic, R., "Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators," IEEE Trans. on Appl. Supercond, Vol. 9, 4607-4612, 1999.
doi:10.1109/77.791916
77. Hwang, C. C., J. S. Tsai, and T. H. Huang, "Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates|Investigations of precursor homogeneity, product reproducibility, and reaction mechanism," Mater. Chem. Phys., Vol. 93, 330-336, 2005.
doi:10.1016/j.matchemphys.2005.03.056
78. Kugimiya, K. and H. Steinfink, "Influence of crystal radii and electronegativities on the crystallization of AB2X4 stoichiometries," J. Inorganic Chem., Vol. 7, 1762-1770, 1968.
doi:10.1021/ic50067a015
79. Modi, K. B., P. V. Tanna, S. S. Laghate, and H. H.Joshi, "The effect of Zn+2 substitution on some structural properties of CuFeCrO4 system," J. Mater. Sci. Lett., Vol. 19, 1111-1113, 2000.
doi:10.1023/A:1006784304415
80. Sathishkumar, G., C. Venkataraju, and K. Sivakumar, "Structural and dielectric studies of nickel substituted cobalt-zinc ferrite," Mat. Sci. App., Vol. 1, 19-24, 2010.
81. Scherrer, P. and G. Nachricht, "Bestimmung der grÄosse und der innerenstruktur von kolloidteilchen mittels rÄontgenstrahlen, nachrichten von der gesellschaft der wissenschaften, gÄottingen," Mathematisch-Physikalische Klasse, Vol. 2, 98-98, 1918.
82. Shebanova, O. N. and P. Lazer, "Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum," J. State Chem., Vol. 174, 424-430, 2003.
doi:10.1016/S0022-4596(03)00294-9
83. Prince, E., Mathematical Technique in Crystallography and Material Science, Springer Verlag, 1982.
84. Wang, Z., D. Schiferl, Y. Zhao, and H. S. C. O'Neill, "High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4," J. Phys. Chem. Solids, Vol. 64, 2517-2523, 2003.
doi:10.1016/j.jpcs.2003.08.005
85. Waldron, R. D., "Infrared spectra of ferrites," Phys. Rev., Vol. 99, 1727-1735, 1955.
doi:10.1103/PhysRev.99.1727
86. Hafner, S., "Ordnung/unordnung und ultrarotabsorption IV. Die absorption einiger metalloxyde mit spinellstruktur," Z. Krist., Vol. 115, 331-358, 1961.
doi:10.1524/zkri.1961.115.5-6.331
87. Ostos, C., L. Mestres, M. L. Mart¶³nez-Sarrion, J. E. Garca, A. Albareda, and R. Perez, "Synthesis and characterization of A-site de¯cient rare-earth doped BaZrxTi1¡xO3 perovskite-type compounds ," Solid State Sci., Vol. 11, 1016-1022, 2009.
doi:10.1016/j.solidstatesciences.2009.01.006
88. Tsurumi, T., T. Teranishi, S. Wada, H. Kakemoto, M. Nakada, and J. Akedo, "Wide range dielectric spectroscopy of SrTiO3-SrZrO3 solid solution," 15th IEEE International Symposium on the Applications of Ferroelectrics, isaf'06, 1-8, 2006.
89. Lee, C. T., C. T. Chen, C. Y. Huang, and C. J. Wang, "Lee, C. T., C. T. Chen, C. Y. Huang, and C. J. Wang, Microwave dielectric properties of (Ba1¡xMgx)5Nb4O15 ceramics," Jap. J. Appl. Phys., Vol. 47, No. 6, 4634-4637, 2008.
doi:10.1143/JJAP.47.4634
90. Shannon, R. D. , "Dielectric polarizabilities of ions in oxides and fluorides," J. Appl. Phys., Vol. 73, 348-366, 1993.
doi:10.1063/1.353856
91. Grimes, N. W. and R. W. Grimes, "Dielectric polarizability of ions and the corresponding effective number of electrons," J. Phys.: Condens. Matter, Vol. 10, 3029-3034, 1998.
doi:10.1088/0953-8984/10/13/019
92. Yoon, S. H., D. W. Kim, S. Y. Cho, and K. S. Hong, "Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds," J. European Ceramic Society, Vol. 26, 2051-2054, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.058
93. Schenck, J. F., "General Electric Corporate Research and Development Center," Schenectady, 12309, 1996.
94. Rajput, S. S., S. Keshri, and V. R. Gupta, "Microwave dielectric properties of (1 - x)Mg0:95Zn0:05TiO3{(x)Ca0:6La0:8=3TiO3 ceramic composites," J. Alloys Compd., Vol. 552, 219-226, 2013.
doi:10.1016/j.jallcom.2012.10.019
95. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, Inc., 2005.