Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-11-25
Calculation Absorption Coefficient of a Weak Electromagnetic Wave by Confined Electrons in Cylindrical Quantum Wires in the Presence of Laser Radiation by Using the Quantum Kinetic Equation
By
Progress In Electromagnetics Research M, Vol. 34, 47-54, 2014
Abstract
We calculated analytic expressions for the absorption coefficient (ACF) of a weak electromagnetic wave (EMW) by confined electrons in cylindrical quantum wires (CQW) in the presence of laser radiation by using the quantum kinetic equation for electrons in the case of electron-optical phonon scattering. The ACF of a weak EMW depends on the intensity E01 and frequency Ω1 of the external laser radiation (E1 = E01sin(Ω1t1)); the intensity E02 and frequency Ω2 of the weak EMW (E2 = E02sin(Ω2t)), the temperature T of the system and the radius R of CQW. Then, the analytic results are numerically calculated and discussed for GaAs/AlAs CQW. The numerical results show that the ACF of a weak EMW in a CQW can have negative values. So, in the presence of laser radiation, under proper conditions, the weak EMW is increased. This is different from the similar problem in bulk semiconductors and from the case of the absence of laser radiation.
Citation
Nguyen Thi Thanh Nhan, and Nguyen Vu Nhan, "Calculation Absorption Coefficient of a Weak Electromagnetic Wave by Confined Electrons in Cylindrical Quantum Wires in the Presence of Laser Radiation by Using the Quantum Kinetic Equation," Progress In Electromagnetics Research M, Vol. 34, 47-54, 2014.
doi:10.2528/PIERM13081207
References

1. Tsu, R. and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett., Vol. 22, No. 11, 562, 1973.
doi:10.1063/1.1654509

2. Harris, Jr., J. S., "From Bloch functions to quantum wells," J. Mod. Phys. B, Vol. 4, 1149, 1990.
doi:10.1142/S0217979290000577

3. Zhao, P., "Phonon amplification by absorption of an intense laser field in a quantum well of polar material," Phys. Rev. B, Vol. 49, No. 19, 13589, 1994.
doi:10.1103/PhysRevB.49.13589

4. Nishiguchi, N., "Resonant acoustic-phonon modes in a quantum wire," Phys. Rev. B, Vol. 52, No. 7, 5279, 1995.
doi:10.1103/PhysRevB.52.5279

5. Dingle, R., "Confined carries quantum states in ultra-thin semiconductor heterostructures," Festkorperprobleme XV, 1975.

6. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Parametric resonance of acoustic and optical phonons in a quantum well," J. Kor. Phys. Soc., Vol. 42, No. 5, 647, 2003.

7. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coe±cient of a weak electromagneticw wave by free carriers in quantum wells by the Kubo-Mori method," J. Phys. Soc. Jpn., Vol. 67, 3875, 1998.
doi:10.1143/JPSJ.67.3875

8. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori method," J. Korean. Phys. Soc., Vol. 41, 149, 2002.

9. Bau, N. Q., L. Dinh, and T. C. Phong, "Absorption coefficient of weak electromagnetic waves caused by confined electrons in quantum wires," J. Korean. Phys. Soc., Vol. 51, No. 4, 1325, 2007.
doi:10.3938/jkps.51.1325

10. Bau, N. Q. and H. D. Trien, "The nonlinear absorption of a strong electromagnetic wave in low-dimensional systems," Wave Propagation, 461, 2011.

11. Bau, N. Q., L. T. Hung, and N. D. Nam, "The nonlinear absorption coeffcient of a strong electromagnetic wave by con¯ned electrons in quantum wells under the influences of confined phonons," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1751-1761, 2010.

12. Bau, N. Q., D. M. Hung, and L. T. Hung, "The influences of confined phonons on the nonlinear absorption coe±cient of a strong electromagnetic wave by confined electrons in doping superlattices," Progress In Electromagnetics Research Letters, Vol. 15, 175-185, 2010.
doi:10.2528/PIERL10030911

13. Bau, N. Q., D. M. Hung, and N. B. Ngoc, "The nonlinear absorption coefficient of a strong electromagnetic wave caused by confined electrons in quantum wells," J. Korean. Phys. Soc., Vol. 42, No. 2, 765, 42, No. .

14. Bau, N. Q. and H. D. Trien, "The nonlinear absorption coefficient of strong electromagnetic waves caused by electrons confined in quantum wires," J. Korean. Phys. Soc., Vol. 56, No. 1, 120, 2010.
doi:10.3938/jkps.56.120

15. Vasilopoulos, P., M. Charbonneau, and C. M. Van Vliet, "Linear and nonlinear electrical conduction in quasi-two-dimensional quantum wells," Phys. Rev. B., Vol. 35, 1334, 1987.
doi:10.1103/PhysRevB.35.1334

16. Ozmen, A., Y. Yakar, B. Cakir, and U. Atav, "Computation of the oscillator strength and absorption coe±cients for the intersubband transitions of the spherical quantum dot," Opt. Commun., Vol. 282, 3999, 2009.
doi:10.1016/j.optcom.2009.06.043

17. Yakar, Y., B. C»akir, and A. Ozmen, "Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential," Opt. Commun., Vol. 283, 1795, 2010.
doi:10.1016/j.optcom.2009.12.027

18. Chen, B., K.-X. Guo, R.-Z. Wang, Z.-H. Zhang, and Z.-L. Liu, "Linear and nonlinear intersubband optical absorption in double triangular quantum wells," Solid State Commun., Vol. 149-310, 2009.

19. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electromagnetic wave by free carries in semiconductors," Sov. Phys. Solid State, Vol. 19, 1760, 1977.

20. Malevich, V. L. and E. M. Epshtein, "Nonlinear optical properties of conduction electrons in semiconductors," Sov. Quantum Electronic, Vol. 1, 1468, 1974.

21. Epshtein, E. M., "Interaction of a strong electromagnetic wave on electron properties of semiconductors," Communication of HEE of USSR, Radio-Physics, Vol. 18, 785, 1975.

22. Nhan, N. V., N. T. T. Nhan, N. Van. Nghia, S. T. L. Anh, and N. Q. Bau, "Nhan, N. V., N. T. T. Nhan, N. Van. Nghia, S. T. L. Anh, and N. Q. Bau, Ability to increase a weak electromagnetic wave by con¯ned electrons in quantum wells in the presence of laser radiation," PIERS Proceedings, 1054-1059, March 2012.

23. Zakhleniuk, N. A., C. R. Bennett, N. C. Constantinou, B. K. Ridley, and M. Babiker, "Theory of optical-phonon limited hot-electron transport in quantum wires," Phys. Rev. B., Vol. 54, 17838, 1996.
doi:10.1103/PhysRevB.54.17838

24. Massale, M. and N. C. Constantinou, "Electron-LO-phonon scattering rates in a cylindrical quantum wire with an axial magnetic field: Analytic results," Phys. Rev. B., Vol. 48, 11128, 1993.
doi:10.1103/PhysRevB.48.11128

25. Ariza-Flores, A. D. and I. Rodriguez-Vargas, "Electron subband structure and mobility trends in p-n delta-doped quantum wells in Si," Progress In Electromagnetics Research Letters, Vol. 1, 159-165, 2008.
doi:10.2528/PIERL07120607