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Calculation Absorption Coefficient of a Weak Electromagnetic Wave
by Confined Electrons in Cylindrical Quantum Wires in the Presence

of Laser Radiation by Using the Quantum Kinetic Equation

Nguyen T. T. Nhan1, * and Nguyen V. Nhan2

Abstract—We calculated analytic expressions for the absorption coefficient (ACF) of a weak
electromagnetic wave (EMW) by confined electrons in cylindrical quantum wires (CQW) in the presence
of laser radiation by using the quantum kinetic equation for electrons in the case of electron-optical
phonon scattering. The ACF of a weak EMW depends on the intensity E01 and frequency Ω1 of the
external laser radiation ( ~E1 = ~E01 sin(Ω1t+ϕ1)); the intensity E02 and frequency Ω2 of the weak EMW
( ~E2 = ~E02 sin(Ω2t)), the temperature T of the system and the radius R of CQW. Then, the analytic
results are numerically calculated and discussed for GaAs/GaAsAl CQW. The numerical results show
that the ACF of a weak EMW in a CQW can have negative values. So, in the presence of laser radiation,
under proper conditions, the weak EMW is increased. This is different from the similar problem in bulk
semiconductors and from the case of the absence of laser radiation.

1. INTRODUCTION

In quantum wires, the motion of electrons is restricted in two dimensions, thus the energy levels
of electrons become discrete in two dimensions. The decrease in dimensionality of system for
semiconductors has led to significant changes in many physical properties of the material, including
optical properties [1–5]. The linear absorption of a weak EMW and the nonlinear absorption of a strong
EMW in low-dimensional systems have been extensively studied theoretically and experimentally in
the past [6–18]. In the experiment, measuring the ACF of a strong EMW directly is very difficult.
So, in the experiment, one usually studies the influence of the strong EMW (laser radiation) on the
electrons in the semiconductor, which is located in the weak EMW. The influence of laser radiation on
the absorption of a weak EMW in normal bulk semiconductors has been investigated [19–21]. However,
in this problem, the ACF of a weak EMW has only positive values. The influence of laser radiation
on the absorption of a weak EMW in quantum wells has also been studied [22], but similar studies for
one-dimensional systems, in particular, CQW, are still unsolved. Therefore, in this paper, we use the
quantum kinetic equation for electrons to calculate analytic expressions for the ACF of a weak EMW
by confined electrons in CQW in the presence of laser radiation. The results are numerically calculated
for the specific case of GaAs/GaAsAl CQW. We show that in the presence of laser radiation, under
proper conditions, the weak EMW is increased. We can use this effect as one of the criteria for quantum
wire fabrication technology.

2. THE QUANTUM KINETIC EQUATION FOR ELECTRONS AND THE ELECTRON
DISTRIBUTION FUNCTION IN A CQW

We consider a CQW consisting of GaAs with a circular cross section with a radius R and a length Lz

embedded in GaAlAs. The carries (electron gas) are assumed to be confined by an infinite potential
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barriers in the xOy plane and free along the wire’s axis (the Oz-axis). In a CQW, the state and the
electron energy spectrum have the form [23]:

ψn,`,pz(r, φ, z) =
1√
V0

einφeipzzψn,`(r) (1)

where V0 = πR2Lz is the volume of the wire, n = 0,±1,±2, . . . the azimuthal quantum number,
` = 1, 2, 3, . . . the radial quantum number, ~pz = (0, 0, pz) the wave vector of the electron along the
wire’s z axis, ψn,l(r) the radial wave function of electron moving in the xOy plane and takes:

ψn,`(r) =
Jn(Bn,`

r
R)

Jn+1(Bn,`)
(2)

and the electron energy spectrum takes the form:

εn,`(pz) = ε(pz) + εn,` (3)

With ε(pz) = ~2pz
2

2m∗ is the electron kinetic energy in the z-direction and εn,` =
~2B2

n,`

2m∗R2 is the quantized
energy in the other directions, where m∗ is the effective mass of the electron and Bn,` the `-th root of
the n-th order Bessel function, for example, B0,1 = 2.405 and B1,1 = 3.832.

The electron form factor takes the form [24]:

In,`,n′,`′(q⊥) =

1∫

0

J|n−n′|(q⊥Rx)ψ∗n′,`′(x)ψn,`(x)xdx, (4)

where x = r
R .

We consider a CQW in a field of two EMWs: a laser radiation as a strong EMW with the intensity
~E01 and the frequency Ω1, a weak EMW with the intensity ~E02 and the frequency Ω2. The EMW is
assumed to be planar and monochromatic, has a high frequency, and propagates along the x direction:

~E(t) = ~E01 sin (Ω1t + ϕ1) + ~E02 sin (Ω2t) (5)

The vector potential of that field of two EMWs is:

~A(t) =
c

Ω1

~E01 cos(Ω1t + ϕ1) +
c

Ω2

~E02 cos(Ω2t) (6)

where c is the velocity of light and ϕ1 the phase difference between two electromagnetic waves.
The Hamiltonian of the electron-optical phonon system in the CQW in that field of two EMWs in

the second quantization representation can be written as [10]:

H =
∑

n,`,~pz

εn,`

(
~pz − e

~c
~Az(t)

)
a+

n,`,~pz
an,`,~pz +

∑

~q

~ω~qb
+
~q b~q

+
∑

n,`,n′,`′,~pz ,~q

C~qIn,`,n′,`′(~q⊥)a+
n′,`′,~pz+~qz

an,`,~pz(b~q + b+
−~q) (7)

where e is the elemental charge, ω~q ≈ ω0 the frequency of an optical phonon; |n, `, ~pz〉 and |n′, `′, ~pz + ~qz〉
are electron states before and after scattering, respectively; a+

n,`,~pz
(an,`,~pz) are the creation (annihilation)

operator of an electron; b+
~q (b~q) are the creation (annihilation) operator of an phonon for a state having

wave vector ~q = (qx, qy, qz); ~qz = (0, 0, qz); C~q is the electron-phonon interaction constant, in the case

of electron-optical phonon scattering, C~q is [7–9]:
∣∣C~q

∣∣2 = e2~ω0
2ε0V0q2

(
1

χ∞ − 1
χ0

)
, here ε0 are the electronic

constant, χ0 and χ∞ are the static and the high-frequency dielectric constants, respectively.
We will establish expression for electron distribution function nn,`,~pz(t). By the definition of electron

distribution function, the quantity nn,`,~pz(t)dpz is the average particle number in state that has the
quantum numbers n, ` and wave vector in the range from pz to pz + dpz, in a unit volume, at time
t. In order to obtain expression for the electron distribution function in quantum wires, we use the



Progress In Electromagnetics Research M, Vol. 34, 2014 49

quantum kinetic equation for statistical average value of the electron particle number operator (or
electron distribution function) nn,`,~pz(t) = 〈a+

n,`,~pz
an,`,~pz〉t [19]:

i~
∂nn,`,~pz(t)

∂t
=

〈[
a+

n,`,~pz
an,`,~pz ,H

]〉
t

(8)

Because nn,`,~pz(t) is the distribution function for the unbalanced process, it is time-dependent function.
The dependence of the time of nn,`,~pz(t) is clearly indicated in Equation (8): the vector potential ~A(t)
is dependent on time so Hamiltonian is also dependent on time; therefore, distribution function is also
dependent on time. The distribution function for the unbalanced process is expressed approximately
through the balanced distribution function. So, nn,`,~pz(t) can be understood as unbalanced distribution
function deviates from balanced state.

Using the Hamiltonian in Equation (7) and the commutative relations of the creation and the
annihilation operators, we obtain the quantum kinetic equation for electrons in the CQW:

∂nn,`,~pz(t)
∂t

= − 1
~2

∑

n′,`′,~q

∣∣C~q

∣∣2∣∣In,`,n′,`′(~q⊥)
∣∣2

+∞∑

u,s,m,f=−∞
Ju(a1zqz)Js(a1zqz)Jm(a2zqz)Jf (a2zqz)

× exp {i {[(s− u)Ω1 + (m− f)Ω2 − iδ] t + (s− u)ϕ1}}

×
t∫

−∞
dt2

{[
nn,`,~pz(t2)N~q − nn′,`′,~pz+~qz(t2)(N~q + 1)

]

× exp
{

i

~
[
εn′,`′(~pz + ~qz)− εn,`(~pz)− ~ω~q − s~Ω1 −m~Ω2+i~δ

]
(t− t2)

}

+
[
nn,`,~pz(t2)(N~q + 1)− nn′,`′,~pz+~qz(t2)N~q

]

× exp
{

i

~
[
εn′,`′(~pz + ~qz)− εn,`(~pz) + ~ω~q − s~Ω1 −m~Ω2 + i~δ

]
(t− t2)

}

− [
nn′,`′,~pz−~qz(t2)N~q − nn,`,~pz(t2)(N~q + 1)

]

× exp
{

i

~
[
εn,`(~pz)− εn′,`′(~pz − ~qz)− ~ω~q − s~Ω1 −m~Ω2 + i~δ

]
(t− t2)

}

− [
nn′,`′,~pz−~qz(t2)(N~q + 1)− nn,`,~pz(t2)N~q

]

×exp
{

i

~
[
εn,`(~pz)− εn′,`′(~pz − ~qz) + ~ω~q − s~Ω1 −m~Ω2 + i~δ

]
(t− t2)

}}
(9)

In Equation (9), the first two terms in the integral include the contributions of the state |n, `, ~pz〉 before
scattering, states |n′, `′, ~pz + ~qz〉 after scattering and phonon energy, energy of two EMWs; the later
two terms include the contributions of the state |n, `, ~pz〉 before scattering, the states |n′, `′, ~pz − ~qz〉
after scattering and phonon energy, energy of two EMWs. Similar equations can be found in bulk
semiconductors and quantum wells [10, 20, 22].

The first-order tautology approximation method is used to solve this equation [19–21]. The initial
approximation of nn,`,~pz(t) is chosen as:

n0
n,`,~pz

(t2)= n̄n,`,~pz , n0
n,`,~pz+~qz

(t2)= n̄n,`,~pz+~qz , n0
n,`,~pz−~qz

(t2)= n̄n,`,~pz−~qz

The first-order tautology approximation method is implemented as follows: instead of the initial
approximation of nn,`,~pz(t) to the right hand side of the Equation (9), then integrating the Equation
(9), we will receive first-order approximation of nn,`,~pz(t) and we stop here. The expression for the
unbalanced electron distribution function nn,`,~pz(t) is received as follows:

nn,`,~pz(t) = n̄n,`,~pz −
1
~

∑

n′,`′,~q

∣∣C~q

∣∣2∣∣In,`,n′,`′(~q⊥)
∣∣2

+∞∑

k,s,r,m=−∞
Js(a1zqz)Jk+s(a1zqz)Jm(a2zqz)Jr+m(a2zqz)

×exp {−i {[kΩ1 + rΩ2 + iδ] t + kϕ1}}
kΩ1 + rΩ2 + iδ

{
n̄n′,`′,~pz−~qzN~q − n̄n,`,~pz(N~q + 1)

εn,`(~pz)− εn′,`′(~pz − ~qz)− ~ω~q − s~Ω1 −m~Ω2 + i~δ
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+
n̄n′,`′,~pz−~qz(N~q + 1)− n̄n,`,~pzN~q

εn,`(~pz)− εn′,`′(~pz − ~qz) + ~ω~q − s~Ω1 −m~Ω2 + i~δ

− n̄n,`,~pzN~q − n̄n′,`′,~pz+~qz(N~q + 1)
εn′,`′(~pz + ~qz)− εn,`(~pz)− ~ω~q − s~Ω1 −m~Ω2 + i~δ

− n̄n,`,~pz(N~q + 1)− n̄n′,`′,~pz+~qzN~q

εn′,`′(~pz + ~qz)− εn,`(~pz) + ~ω~q − s~Ω1 −m~Ω2 + i~δ

}
(10)

where a1z and a2z are the z-components of ~a1 = e ~E01

m∗Ω2
1

and ~a2 = e ~E02

m∗Ω2
2
, respectively. N~q is the balanced

distribution function of phonons, n̄n,`,~pz the balanced distribution function of electrons, Jk(x) the
Bessel function, and the quantity δ is infinitesimal and appears due to the assumption of an adiabatic
interaction of the EMW.

Because Equation (10) is obtained from the integration of Equation (9), as well as Equation (9),
the first two terms in brackets include the contributions of the state |n, `, ~pz〉 before scattering, states
|n′, `′, ~pz − ~qz〉 after scattering and phonon energy, energy of two EMWs; the later two terms include
the contributions of the state |n, `, ~pz〉 before scattering, the states |n′, `′, ~pz + ~qz〉 after scattering and
phonon energy, energy of two EMWs. Similar equations can be found in quantum wells [10, 22].

In expression (10), the quantum numbers n, ` are the characteristic indexes for quantum wires.
So, this is one of the differences for a similar problem in the normal bulk semiconductors published by
Malevich and Epshtein in [20].

3. GENERAL ANALYTIC EXPRESSION OF ACF OF A WEAK EMW IN THE
PRESENCE OF LASER RADIATION FIELD IN A CQW

Because the motion of electrons is confined in the xOy plane, we only consider the current density
vector of electrons along the z direction in the CQW. It has the form [19]:

~jz(t) =
e~
m∗

∑

n,`,~pz

(
~pz − e

~c
~Az(t)

)
nn,`,~pz(t) (11)

The ACF of a weak EMW by confined electrons in the presence of laser radiation in the CQW takes
the form [19]:

α =
8π

c
√

χ∞E2
02

〈
~jz(t) ~E02 sinΩ2t

〉
t

(12)

Substituting nn,`,~pz(t) into the expression of ~jz(t), then substituting ~jz(t) into the expression (12), the
ACF of a weak EMW in the presence of laser radiation in CQW is obtained as:

α =
e4n0ω0

2πε0c
√

2πχ∞m∗kBTm∗Ω3
2Z

(
1

χ∞
− 1

χ0

)
cos2α2

∑

n,`,n′,`′
Gn,`,n′,`′

×
(

A1 − 1
2
A2 +

3
32

A3 +
1
4
B1 − 1

16
B2 +

1
64

B3

)
(13)

With:
A1 = F0,1 − F0,−1; A2 = L0,1 − L0,−1; A3 = M0,1 −M0,−1

In formulas for A1, A2, A3, we obtain the contribution of the absorption processes and emission processes
of a photon of weak EMW.

B1 =L−1,1 − L−1,−1 + L1,1 − L1,−1; B2 =M−1,1 −M−1,−1 + M1,1 −M1,−1

In these formulas, we obtain the contribution of the absorption processes and emission processes of a
photon of weak EMW and strong EMW.

B3 = M−2,1 −M−2,−1 + M2,1 −M2,−1

Quantity B3 includes the contributions of the absorption processes and emission processes of a photon
of weak EMW, two photons of strong EMW.
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In the above formulas:

Fs,m = e
− Cs,m

2kBT K0

( |Cs,m|
2kBT

)
e
− ~2B2

n,`

2m∗R2kBT

(
1 + Nω0 − e

~ω0−s~Ω1−m~Ω2
kBT Nω0

)

Ls,m = a2
1cos2α1e

− Cs,m
2kBT

(
4m∗2C2

s,m

~4

)1/2
K1

( |Cs,m|
2kBT

)
e
− ~2B2

n,`

2m∗R2kBT

(
1 + Nω0 − e

~ω0−s~Ω1−m~Ω2
kBT Nω0

)

Ms,m = a4
1cos4α1e

− Cs,m
2kBT

(
4m∗2C2

s,m

~4

)
K2

( |Cs,m|
2kBT

)
e
− ~2B2

n,`

2m∗R2kBT

(
1 + Nω0 − e

~ω0−s~Ω1−m~Ω2
kBT Nω0

)

We obtain contribution of the Bose-Einstein distribution function for optical phonons Nω0 in formulas
for Fs,m, Ls,m, Ms,m

a1 =
eE01

m∗Ω2
1

; Nω0 =
1

e
~ω0
kBT − 1

;

Gn,`,n′,`′ =

+∞∫

−∞
dqx

+∞∫

−∞
dqy

∣∣In,`,n′,`′(~q⊥)
∣∣2; Z =

∑

n,`

e
− ~2B2

n,`

2m∗R2kBT ;

Quantity Z appears while we standardize balance distribution function of the electron.

Cs,m =
~2B2

n′,`′

2m∗R2
− ~2B2

n,`

2m∗R2
+ ~ω0 − s~Ω1 −m~Ω2, with s = −2,−1, 0, 1, 2; m = −1, 1.

Quantity Cs,m includes contributions of the quantized energy in the restricted directions before and
after scattering, phonon energy, photon energy of two EMWs.

In the above formulas, α1 is the angle between the vector ~E01 and the positive direction of the Oz

axis, α2 the angle between the vector ~E02 and the positive direction of the Oz axis, kB the Boltzmann
constant, and n0 the electron density in CQW.

Equation (13) is the expression of ACF of a weak EMW in the presence of external laser radiation
in a CQW. As one can see, the ACF of a weak EMW is independent of E02 and only dependent on
E01, Ω1, Ω2, T, R. This expression is different from that in the normal bulk semiconductors and quantum
wells [20, 22]. We already know that in the quantum wells, state of the electron is characterized by a
quantum number n and wave vector ~p⊥ in the plane xOy, while in quantum wires, state of the electron
is characterized by two quantum numbers n, ` and wave vector ~pz. So, the equations of quantum wires
will be more complex than the equations of quantum wells. For instance, Equation (13) has four sums
according to the four indexes, while a similar equation of quantum wells has only two sums according
to the two indexes.

From expression (13), when we set E01 = 0, we will receive expression of ACF of a weak EMW in
the absence of laser radiation in CQW.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the ACF is numerically calculated for the specific case of GaAs/GaAsAl CQW. The
parameters used in the calculations are as follows [8, 25]: χ∞ = 10.9, χ0 = 13.1, m∗ = 0.066m0, m0

being the mass of free electron, n0 = 1023 m−3, ~ω0 = 36.25meV, α1 = π
3 , α2 = π

6 .
Figure 1 describes the dependence of α on the temperature T for five different values of E01, with

Ω1 = 3×1013 Hz, Ω2 = 1013 Hz, R = 30 nm. Figure 1 shows that when the temperature T of the system
rises up from 20 K to 400 K, the curves have a maximum and a minimum.

Figure 2 describes the dependence of α on the frequency Ω1 of the laser radiation for three different
values of T , with Ω2 = 1013 Hz, R = 30nm, E01 = 14 × 105 V/m. It can be seen from this figure that
the curves can have a maximum or no maximum in the investigative interval.

Figure 3 describes the dependence of α on the frequency Ω2 of the weak EMW for three different
values of T , with Ω1 = 3 × 1013 Hz, R = 30 nm, E01 = 15 × 106 V/m. From Figure 3 we see that the
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Figure 1. The dependence of α on T . Figure 2. The dependence of α on Ω1.

Figure 3. The dependence of α on Ω2. Figure 4. The dependence of α on E01 (for three
different values of T .

curves have a maximum (peak) at Ω2 = ω0 and smaller maximum at Ω2 6= ω0. The frequencies Ω2 of the
weak EMW at which ACF has maxima (peaks) are not changed as temperature T is varied. We know
that optical phonons are oscillations of the crystal lattice, so when frequency Ω2 of the weak EMW is
equal to frequency ω0 of the optical phonon, resonance peak will appear, i.e., the absorption of weak
EMW of crystal lattice is the best. Here, we also see the appearance of a lower different resonance peak.
This is different from the bulk semiconductors; in the bulk semiconductor, we only see the appearance of
a resonance peak. This is due to the transitions of electrons between the mini bands in low-dimensional
systems.

Figure 4 shows ACF as a function of intensity E01 of the laser radiation for three different values
of T , with Ω1 = 6× 1013 Hz, Ω2 = 3× 1013 Hz, R = 30nm. From the figure we see that the curves have
a maximum in the investigative interval. We see that the maximum value of ACF moves toward right
side as the temperature decreases.

Figure 5 shows ACF as a function of intensity E01 of the laser radiation for three different values
of R, with Ω1 = 6× 1013 Hz, Ω2 = 3× 1013 Hz, T = 80 K. From the figure we see that the curves have a
maximum in the investigative interval. From this figure, we see that the maximum value of ACF moves
toward right side as the wire’s radius increases.

Figure 6 describes the dependence of α on R for three different values of T , with Ω1 = 3× 1013 Hz,
Ω2 = 7× 1013 Hz, E01 = 15× 106 V/m. From this figure, we see that the curves can have a maximum
or many maxima (peaks) in the investigative interval.

From these figures we see that the dependence of the ACF of a weak EMW on E01, Ω1, Ω2, T , R is
complex, and the ACF of a weak EMW can have maximum values. These figures also show that under
influence of laser radiation, ACF of a weak EMW in a CQW can have negative values, which means that
ACF becomes an increased coefficient. So, in the presence of strong EMW, under proper conditions, the
weak EMW is increased. This is different from the similar problem in bulk semiconductors and from
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Figure 5. The dependence of α on E01 (for three
different values of R).

Figure 6. The dependence of α on R.

the case of the absence of laser radiation. We can use this effect as one of the criteria for quantum wire
fabrication technology: if the quantum wire is fabricated successfully, this effect will appear; if this effect
does not appear, it means that the fabrication has failed. This effect has also appeared in a similar
problem in quantum wells that has been published [22]. However, quantum well is a semiconductor
structure that is completely different from quantum wires. So, expression of ACF of a weak EMW in
quantum wires also differs from one in quantum wells and effect of weak EMW increase in quantum
wires also expresses differently from the one in quantum wells.

5. CONCLUSIONS

In this paper, we obtain an analytical expression of the ACF of a weak EMW in the presence of laser
radiation in CQW for the case electron-optical phonon scattering. The expression shows that the ACF
of a weak EMW is independent of E02 and is only dependent on E01, Ω1, Ω2, T , R. From this expression,
the ACF of a weak EMW in the absence of laser radiation in CQW can be obtained by setting E01 = 0.
The ACF is numerically calculated for the specific case of GaAs/GaAsAl CQW. Computational results
show that the dependence of the ACF on various physical factors of the system is complex. These
results also show that under the influence of laser radiation, the ACF of a weak EMW in a CQW can
have negative values, i.e., ACF becomes increased coefficient. So, in the presence of strong EMW, under
proper conditions, the weak EMW is increased. We can use this effect as one of the criteria for quantum
wire fabrication technology.
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