1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101
2. Xu, W., P. P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.
3. Park, S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using effcient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.
4. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, 121-133, Jan. 1996.
doi:10.1109/7.481254
5. Yeo, T. S., N. L. Tan, C. Zhang, and Y. Lu, "A new subaperture approach to high squint SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 954-968, May 2001.
doi:10.1109/36.921413
6. Soumekh, M., "Synthetic Aperture Radar Signal Processing with MATLAB Algorithms," Wiley, 1999.
7. Smith, A. M., "A new approach to range-Doppler SAR processing," Int. J. Remote Sens., Vol. 12, No. 2, 235-251, 1991.
doi:10.1080/01431169108929650
8. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101
9. Moreira, A. and Y.H. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1029-1040, Sep. 1994.
doi:10.1109/36.312891
10. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 5, 1123-1136, Sep. 1996.
doi:10.1109/36.536528
11. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, 2005.
12. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," Proc. Inst. Elect. Eng. --- Radar Sonar Navig., Vol. 153, No. 3, 301-310, Jun. 2006.
doi:10.1049/ip-rsn:20045087
13. Wong, F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, May 2001.
doi:10.1109/36.921412
14. Sun, G. C., X. W. Jiang, M. D. Xing, Z. J. Qiao, Y. R. Wu, and Z. Bao, "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 6, 2308-2322, Jun. 2011.
doi:10.1109/TGRS.2010.2102040
15. An, D. X., X. T. Huang, T. Jin, and Z. M. Zhou, "Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3595-3609, Sep. 2012.
doi:10.1109/TGRS.2012.2183606
16. Zhang, S. X., M. D. Xing, X. G. Xia, L. Zhang, R. Guo, and Z. Bao, IEEE Trans. Geosci. Remote Sens., Vol. 10, No. 1, 150-154, Jan. 2013.
doi:10.1109/LGRS.2012.2195634
17. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110
18. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507
19. Huang, Y. and Z. Bao, "A new two-dimension-separated approach to high squint SAR processing," J. Electron. Inf. Technol., Vol. 27, No. 1, 1-5, Jan. 2005.