1. American Cancer Society "Breast cancer facts and figures 2012," Tech. Rep., 2012.
2. Cancer Research UK "Cancerstats --- breast cancer --- uk," Tech. Rep., 2009.
3. Nass, S. L., I. C. Henderson, and J. C. Lashof, "Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer," National Academy Press, 2001.
4. Bird, R. E., T. W. Wallace, and B. C. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992.
5. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissue at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1984.
6. Joines, W., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys, Vol. 21, 547-550, 1994.
doi:10.1118/1.597312
7. Souvorov, A., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two dimensional analysis of a microwave at antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, August 2000.
doi:10.1109/22.859490
8. Craddock, I. J., R. Nilavalan, A. Preece, and R. Benjamin, "Ex-perimental investigation of real aperture synthetically organised radar for breast cancer detection," IEEE AP-S International Symposium, Vol. 1B, 179-182, 2005.
9. Hagness, S. C., A. Taove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440
10. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902
11. O'Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic mist beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2010.
doi:10.1109/TBME.2009.2016392
12. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal,w benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002
13. O'Halloran, M, E. Jones, and M. Glavin, "Effects of fibroglandular distribution on data-independent beamformering algorithms," Progress In Electromagnetic Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701
14. Shahzad, A., M. O'Halloran, E. Jones, and M. Glavin, "Prefiltered beamforming for early-stage breast cancer detection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 500-503, 2013.
doi:10.1109/LAWP.2013.2255858
15. Elahi, M. A., M. Glavin, E. Jones, and M. O'Halloran, "Artifact removal algorithms for microwave imaging of the breast," Progress In Electromagnetics Research, Vol. 141, 185-200, 2013.
16. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446
17. Winters, D. W., E. J. Bond, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296
18. Sarafianou, M., I. Craddock, T. Henriksson, M. Klemm, D. Gibbins, A. Preece, J. Leendertz, and R. Benjamin, "Music processing for permittivity estimation in a delay-and-sum imaging system," 7th European Conference on Antennas and Propagation (EuCAP), 839-842, 2013.
19. Bourqui, J. and E. Fear, "Systems for ultra-wideband microwave sensing and imaging of biological tissues," 7th European Conference on Antennas and Propagation (EuCAP), 834-835, 2013.
20. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast ," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, December 2008.
doi:10.1109/TBME.2008.2002130
21. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, December 2007.
doi:10.1109/LMWC.2007.910465
22. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," International Journal of Antennas and Propagation, Vol. 2008, 2008.
23. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716
24. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-13, 2006.
25. Bourqui, J., J. M. Sill, and E. Fear, "A prototype system for measuring microwave frequency reflections from the breast," International Journal of Biomedical Imaging, Vol. 2012, 2012.