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A Preprocessing Filter for Multistatic Microwave Breast Imaging
for Enhanced Tumour Detection
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Abstract—Ultra Wideband Radar imaging has shown promising results in the detection of small
tumours within low to medium density human breasts. A wide range of beamforming algorithms
has been presented in several recent studies with good tumour localization capabilities, but most of
these suffer a deterioration in performance with an increase in breast tissue density. In this paper,
a preprocessing filter is used to compensate for path-dependent attenuation and phase effects, in
conjunction with a range of existing data-dependent and data-independent confocal microwave imaging
algorithms. Results indicate that this data preprocessing improves the performance of all beamformers,
enabling detection and accurate localization of multiple tumours in mild to moderately dense human
breasts. The proposed framework is tested on 3D anatomically accurate numerical breast models and
the performance is evaluated across a range of appropriate metrics.

1. INTRODUCTION

Breast cancer represents 31% of all cancers in women, with an approximate 1.38 million sufferers
worldwide. The estimated death toll due to breast cancer in 2011 was 39,520 in the U.S. [1] and
11,650 in UK [2]. The current standard breast screening modality is X-Ray mammography. Although it
has shown good cancer detection capabilities, mammography has a number of well-known limitations,
particularly in dense breast tissue [3]. Studies have shown that a tumour occurring in dense glandular
breast is often likely to be missed by X-Ray mammography [4]. This limitation of X-Ray mammography,
coupled with other adverse physiological effects, motivate the development of alternate breast imaging
modalities with enhanced sensitivity and specificity.

Several prototype microwave breast imaging systems have been developed in recent years, and
almost all of them are based on studies that confirm existence of significant dielectric contrast between
different types of breast tissues at microwave frequencies. Early studies reported that the dielectric
contrast between normal and malignant tissues was sufficiently high to differentiate between them [5, 6].
Historically, researchers sought to exploit this contrast and developed microwave imaging techniques
to localize and classify malignant tissues in human breast. Two major microwave imaging approaches
were examined: Microwave Tomography [7] and Ultra-Wideband (UWB) Radar Imaging [8]. This paper
specifically addresses UWB Radar Imaging.

UWB Radar Imaging uses the back-scattered electromagnetic energy from microwave scatterers
within the breast to create an image. Hagness et al. [9] developed one of the first beamforming algorithm
based on the Confocal Microwave Imaging (CMI) approach. Since then, there has been a large amount
of research on the refinement of radar based beamformers [10, 11]. However, each of these algorithms is
based on several assumptions regarding the relative dielectric properties of normal and cancerous breast
tissue. One of the most important assumptions is that the breast is primarily dielectrically homogeneous;
and consequently that the dielectric properties of normal tissue allow for coherent addition of the UWB
backscattered signals.
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However, a recent study of the dielectric properties of breast tissue has highlighted the dielectric
heterogeneity of normal breast tissue [12]. Lazebnik et al. found a very significant dielectric contrast
between healthy adipose and glandular tissue within the breast. This heterogeneity of normal breast
tissue had not been considered in previous beamformer designs and the difficulty this presents to
traditional beamformers was highlighted in a recent study by O’Halloran et al. [13]. The relatively
small dielectric contrast between fibroglandular and cancerous tissues often makes it difficult to detect
a tumour within dense glandular human breast. The presence of glandular tissue with higher dielectric
properties introduces a significant amount of attenuation and dispersion in the signal, and in these
circumstances conventional beamforming algorithms often fail to detect and localize the tumour. An
effective means for reducing the effects of dispersion due to heterogenous tissue will enable a beamformer
to better differentiate between adjacent dielectric scatterers within the breast, providing a much
improved image of any tumours present.

In this paper, a preprocessing approach to compensate for attenuation and dispersion effects
is described and the resultant signals are processed by a range of data-dependent (DD) and data-
independent (DI) beamformers. Test data are generated using anatomically accurate electromagnetic
breast models, based on Lazebnik’s study. The pre-filtering approach is a novel technique that can
be used to enhance the image quality of existing beamformer. It was previously described by the
authors and used in conjunction with mono-static Delay And Sum (DAS) beamformer algorithm [14].
In this study, the application of the proposed preprocessing filter has been extended from monostatic to
multistatic and applied to a range of beamformers. The efficacy of the proposed filter as general
preprocessing approach on multistatic signals is evaluated. It is shown that the proposed filter
can be used to improve upon the performance of a number of existing multistatic DI and DD
beamforming algorithms. In particular, the performance of the preprocessing filter, in conjunction with
the conventional Delay And Sum (DAS) beamformer, Improved Delay And Sum (IDAS) beamformer,
Delay Multiply And Sum (DMAS) beamformer, Robust Capon Beamformer (RCB), and Multistatic
Adaptive Microwave Imaging (MAMI), is examined and evaluated with respect to several performance
metrics. The remainder of the paper is organized as follows: Section 2 describes the preprocessing
filter design; Section 3 details the numerical breast models and simulation setup used to evaluate the
method; Section 4 describes the DD and DI beamformers; Section 5 presents the performance metrics
and results; finally, conclusions are detailed in Section 6.

2. DESIGN OF PRE-PROCESSING FILTER

In the pre-filtering approach described here, the recorded multistatic radar signals are filtered to
compensate for dispersion and attenuation before applying any beamforming algorithm. Assuming
that the average dielectric parameters of the breast can be estimated a-priori, a compensation filter to
remove a significant portion of the dispersion and attenuation effects introduced by the breast can be
designed. The filter design process will be described in more detail in the following section.

2.1. Artifact Removal

Prior to application of pre-filtering, it is assumed that artifacts such as skin reflections, antenna
coupling and reverberation effects have been removed. The artifact due to mutual antenna coupling
and reverberation effects are removed by subtracting measurements from the system recorded in the
absence of a breast phantom. A range of existing artifact removal algorithms such as given in [15] can
be used to remove the air-skin artifact before filtering. The primary focus of this paper is preprocessing
for improved breast cancer detection; therefore, in this study these artifacts are removed using an ideal
artifact removal method as used by Bond et al. [16].

2.2. Compensation Filter Design

In order to design the filter, the average dielectric properties of the breast under examination must be
established. Since the average dielectric properties of the breast will vary significantly between patients,
this study assumes that these properties have been established a-priori using an appropriate patient-
specific estimation algorithm, such as [17–19]. Based on these properties, a Finite Difference Time
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Domain (FDTD) breast model is created. The breast is illuminated by a UWB pulse and the reflected
signals are recorded. Next, a second set of electromagnetic signals is recorded on an equivalent non-
dispersive FDTD model of breast with similar average dielectric properties. These two sets of signals
are used to design the compensation FIR filter.

Let si(r, n) be the response received at the ith antenna focusing at spatial location r in a 3D
dispersive model, zi(r, n) is the signal received from an equivalent non dispersive model, L is the filter
length and N is the length of the sampled signal. Then the least squares solution to the real valued
filter design problem, for each antenna location i, is given by:

w = R−1p (1)

where, w = [w0, w1, . . . , wL−1]T is a vector of filter coefficient values to be estimated, R is the L × L
autocorrelation matrix of the received dispersive signal si(r, n), and p is the L × 1 cross-correlation
vector defined as:

p = QzT (2)

The covariance matrix Q is constructed from the received signal as:

Q =




si(r, L) si(r, L + 1) · · · si(r,N)
...

. . .
...

si(r, 1) si(r, 2) · · · si(r,N −M + 1)


 (3)

and the vector z is given as:

z = [zi(r, L), zi(r, L + 1), . . . , zi(r,N)] (4)

The signals used for the filter design are recorded on each discrete spatial position r over the
numerical phantom with estimated average dielectric properties. The distance di(r) = |r− ri|, for each
focal point in a 3D grid is rounded to the nearest integer value and a vector of unique distance values
is created as d = [dmin, . . . , dmax]. The FIR filter weights for the complete set of synthetic focal points
in the imaging grid are precomputed. This set of FIR filters is then applied to remove the attenuation
and dispersion in the received signals after focusing at each spatial position in the imaging grid. The
focus is achieved by time shifting all the signals to align for the focal point r in the grid.

3. NUMERICAL MODELS

The FDTD model must incorporate the heterogeneity and the spatial distribution of different tissues
within the breast. The 3D models used in this study are based on the UWCEM MRI-derived Breast
Phantom Repository [20]. Two concentric rings of 20 antennas (point source) are positioned around the
breast, as shown in Figure 1. The antennas are immersed in a liquid matching the average dielectric
properties of adipose as given in Table 1. The dielectric properties of skin, adipose, and fibro-glandular
tissue used in the FDTD models are based on Lazebnik’s studies [21], and incorporated using Debye
models, with the parameters being derived empirically. The Debye parameters for each tissue type,
along with the permittivity and conductivity at the center frequency, are given in Table 1.

Three specific scenarios are considered (Figure 2) where (2B) and (2C) are derived from MRI:

• A tumour is homogeneous breast phantom;
• A tumour in a heterogeneous fat-only breast model, with variations in dielectric properties to

produce 25 different samples.
• A tumour in a heterogeneous breast with fat and fibro-glandular tissue but positioned in a region

of adipose tissue.

A differentiated Gaussian pulse, with a center frequency of 6 GHz and a −3 dB bandwidth of 6.4 GHz
is used to illuminate the breast. Prior to any signal processing, all radar signals are down sampled
from 599GHz to 59.9 GHz. A 3D image of the entire breast is created, where the grid dimensions are
190× 190× 190 voxels, with resolution of 1 mm3.
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Figure 1. MRI-derived FDTD model and antennas setup.
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Figure 2. MRI-derived FDTD models.

Table 1. Debye parameters of constituent tissues of the breast used in the FDTD model, and their
corresponding relative permittivity and effective conductivity at the center frequency.

Tissue ε∞ ∆ε
σs

(S/m)
τ

(ps)
εr σe

Adipose Lowest 2.848 1.104 0.05 13.00 3.738 0.196
Adipose Highest 3.987 3.545 0.180 13.00 6.848 0.657
Fibro-glandular

Lowest
11.98 23.55 0.538 13.00 30.94 3.644

Fibro-glandular
Highest

14.91 38.55 0.738 13.00 45.99 5.823

Skin 15.93 21.83 0.831 13.00 33.51 3.705
Tumor 20.28 45.05 1.300 13.00 56.60 7.242

4. BEAMFORMERS

Beamforming algorithms perform spatial filtering on data acquired in a radar based system. It is used
to focus on a certain spatial position and create a 2D/3D map of reflected energy from an imaging space.
Beamforming algorithms are classified into two categories: data-independent (DI) and data-dependent
(DD) beamformers. These categories and representative algorithms in each category are explained in
following section.
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4.1. Data-independent Methods

The DI beamformers use an assumed propagation model to establish the delay and attenuation effects
encountered by a radar signal propagating in that channel. The signals are shifted and scaled for a
particular focal point in the imaging space. The standard Delay And Sum (DAS) beamformer and two
variants used in this study, are explained in the following sub-sections.

4.1.1. Delay and Sum

The DAS beamformer involves the summation of the time-shifted scattered signals from the breast
to create a synthetic focus. Consider the case of M multistatic channels and let si(r, n) denote the
ith scattered discrete time signal from focal point r, then the energy associated with the focal point
r = [x, y, z] within the breast is defined as:

I(r) =
Twin∑

n=1

M∑

i=1

wnsi(r, n−∆i(r)) (5)

where n is sample index with discrete time delay in the ith channel described as ∆i(r) = (di(r))/(vTs),
where di(r) = |r − rt

i | + |r − rr
i | describes the ith channel path length; rt

i and rr
i are transmitting and

receiving antenna locations; v is the average velocity of signal propagation in breast tissue, Twin the
window length in time samples, and Ts the sampling interval. The term wn is a wighting factor to
compensate for the attenuation in the signal due to propagation in the lossy medium.

4.1.2. Improved Delay and Sum

Klemm et al. [22] proposed an extended version of DAS, with an additional weighting factor called
the Quality Factor (QF). The energy from all the channels at a particular focal point is cumulatively
summed and a second order polynomial is fitted to the cumulative energy curve as function of increasing
number of channels. The coefficient a of highest order term in the fitted polynomial (y = ax2 + bx + c)
is considered as the QF.

4.1.3. Delay Multiply and Sum

The DMAS beamformer is another extension of the conventional DAS beamformer, proposed by
Lim et al. [23]. It involves paired multiplication of radar signals before summation as an extra measure
of coherence.

4.2. Data-dependent Methods

Data-dependent (DD) algorithms adaptively select weight vectors to incorporate the directivity in the
beamforming algorithm. Enhanced sensitivity to certain Directions of Arrival (DOA) in the focusing
algorithm provides better resolution, and suppression of interference from other scatterers in the imaging
space. Two of the major existing beamforming algorithms are used in this study to verify the efficacy of
the pre-processing technique with DD beamforming algorithms. These DD beamformers are explained
in the following section.

4.2.1. Robust Capon Beamformer (RCB)

A multistatic Robust Capon (RCB) Beamforming algorithm was presented by Xie et al. [24]. The RCB
algorithm is described as:

min
w

{
wT Rw

}
subject to wT a0 = 1 (6)

where w = [w1, w2, . . . , wM ]T is the weight vector for M multistatic channels, a0 the steering vector
corresponding to the signal of interest, and R the sample covariance matrix. The solution to (6) is
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derived as:

w =
R−1a0

aT
0 R−1a0

(7)

The steering vector a0 is obtained from:

min
a

{
aT

0 Ra0

}
subject to ‖a0 − ā‖2 ≤ ε (8)

where ā = [1, . . . , 1]T is an assumed steering vector, and factor ε is used to describe the uncertainty of
a0. The energy at a given point r = [x, y, z] can be calculated as:

I(r) =
Twin∑

n=1

M∑

i=1

wi.si(r, n−∆i(r)) (9)

4.2.2. Multistatic Adaptive Microwave Imaging (MAMI)

The MAMI algorithm implements a cascaded two-stage RCB to enhance the performance of a single-
stage RCB-based beamformer. The estimated signals from stage one can be represented as:

Ŝ(n) = ass(n) + es(n), n = 1, . . . , N (10)

where Ŝ(n), n = 1, . . . , N is a temporal representation of the estimated signals from stage one, as denotes
the steering vector for second stage, es(n) is the estimation error, and sn(n) is the desired signal that
is estimated by:

max
σ2,as

σ2 subjct to Rs − σ2asa
T
s ≥ 0, ‖as − ā‖2 ≤ εs (11)

where σ2 = 1/N
N∑

n=1
s2(n) is the power of the signal of interest, εs the uncertainty parameter in second

stage, and Rs the sample covariance matrix given as:

Rs =
1
N

N∑

n=1

Ŝ(n)ŜT (n) (12)

Thus weight vector ws for the second stage of MAMI can defined as:

ws =
R−1

s as

aT
s R−1

s as

(13)

Finally, the energy at focal point r = [x, y, z] in imaging space can be calculated as:

I(r) =
Twin∑

n=1

M∑

i=1

wsi · ŝi(r, n) (14)

where ŝi(r, n) is an estimate of signal si(n) in Equation (10) for energy calculation at location r.

5. PERFORMANCE METRICS AND RESULTS

5.1. Metrics

5.1.1. Signal to Mean Ratio

The Signal to Mean Ratio (SMR) describes the ratio of the tumour response to the mean of response
of all tissue types within the resultant energy profile. The SMR is given as:

SMR = ETµ/Eµ (15)

where ETµ is the average energy computed over the tumour region (defined by the Full Width Half
Maximum (FWHM) metric below) and Eµ is the average energy over whole imaging grid.
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5.1.2. Full Width Half Maximum

The physical extent of the tumour is measured by the Full Width Half Maximum (FWHM) metric, and
is defined as the distance from the tumour response to where the tumour backscattered energy drops
by one half. It is computed over a 2D cross-section of the constructed 3D energy map at the center of
the tumour location in each direction, and is averaged over all three directions.

5.1.3. Signal to Clutter Ratio

The Signal to Clutter Ratio (SCR) describes the ratio of maximum energy in the tumour region to
maximum energy outside the area defined by the FWHM of the tumour. The SCR is defined as:

SCR = ETmax/ECmax (16)

where ETmax is the maximum energy in the tumour region and ECmax is the maximum energy outside
the FWHM of tumour response.

5.2. Results

This section describes the effect of the pre-filtering process on the raw radar signals, before illustrating
the benefit of the signal pre-processing to all breast beamforming algorithms. Firstly, to clearly show
the effects of pre-filtering, a sample received signal (S(1,6) — solid blue, transmitted from antenna 1 and
received at antenna 6) is shown in Figure 3, with the corresponding filtered signal shown in red. The
inset image in Figure 3 shows a snapshot of the tumour response in the signal. Importantly, the FWHM
of the filtered signal is approximately equal to that of the original transmitted pulse, indicating the
compensation for path-dependent signal dispersion. This compensation should result in an improved
image of the breast.
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Figure 3. A sample received signal (S(1,6) (solid
blue), transmitted from antenna 1 and received at
antenna 6) with the corresponding filtered signal
shown in red. The pre-filtering process compen-
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Next, imaging results with and without filtering for a range of beamforming algorithms will be
presented. Three performance metrics were used as described above to evaluate imaging performance.
The detection and localization capabilities are verified by adding accurately modeled malignant tumours
of 5 mm, 7 mm and 10 mm in these FDTD breast models. A set of homogeneous (Figure 2(a)) and
adipose-only heterogeneous (Figure 2(b)) models with variations in dielectric properties and tumour
location were considered, resulting in 25 different clinical scenarios. The box plots of performance
metrics for the reconstructed images (with and without pre-filtering) are provided for comparison in
Figures 4, 5, and 6.
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The pre-filtering approach shows an improvement across all of the five beamformers with an average
11 dB increase in SMR, 10 dB increase in SCR, and 25% reduction in FWHM for detected tumours in
the reconstructed images. The reconstructed images (2-D slices) without and with pre-filtering for the
DAS, IDAS, DMAS, RCB, and MAMI beamformers (top to bottom respectively) are shown in Figure 9.

The column on the left presents images formed without pre-filtering and the column on the right
shows the images with pre-filtering. Clearly pre-filtering provides better clutter-suppression and tumour
localisation compared to non-filtered images, especially in the case of DMAS and RCB beamformers.
However, it could be argued that all of the five beamformers considered in this study could fail to
detect a tumour in a breast with a higher proportion of dense fibro-glandular tissue. This is tested
with a dense numerical example (Figure 2(c)) and resulting images are shown in Figure 7. Here the
DMAS beamformer is used to reconstruct a 2D slice of a dense dielectrically-heterogeneous breast (the
permittivity of the fibro-glandular and tumour tissue in the model are 45 and 56, respectively at the
centre frequency of the transmitted pulse). In the original image, the tumour is completely obscured by
clutter due to the large region of glandular tissue at the centre of the breast. However, using pre-filtering,
the tumour finally becomes discernible, even in this most challenging of breast imaging scenarios.

It is observed that pre-filtering can improve the effective resolution of the signal and imaging results
by compensating for dispersion. However, it may introduce a significant amount of noise in the signals
if the estimation error in the average dielectric values is higher than 20%. Figure 8 shows plot of Mean
Squared Error (MSE) across all the channels in three different scenarios. A filter designed using average
estimated values has been applied to three MRI derived numerical phantoms where the estimation error
of dielectric properties is 10% (blue), 20% (green) and 30% (red). The pre-filtered signals are compared
with simulated non-dispersive signals from the same numerical phantom. The MSE is below −100 dB
for cases when the estimation error is less than 20%. However, the MSE is significantly high when the
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estimation error of average dielectric properties of the phantom is more than 20%. This reinforce the
need to have an accurate average dielectric properties estimation algorithm.

The pre-filtering approach has been applied to Class 1 and Class 2 in the MRI-derived phantom
repository. It is not clear if existing beamformers will successfully detect tumors in highly dense breast
of Class 3 or Class 4. However, the study shows that the image created with pre-filtering method will
be improved compared to any of the non-filtered beamformer used in this study. The method can be
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Figure 9. 2D slice of reconstructed energy maps with (b) pre-filtering and (a) without pre-filtering for
all beamformers.

used in practical scenario if average dielectric properties can be estimated with less than 20% error and
shape information is available to produce numerical model with minimal error.

6. CONCLUSIONS

A pre-filtering approach for CMI has been developed to compensate for dispersion introduced by normal
breast tissue, across a range of data-dependent and data-independent beamforming algorithms, and over
a range of potential clinical scenarios. It has been clearly shown that the proposed pre-filtering approach
improves the performance of conventional beamformers, by compensating for attenuation and phase
effects encountered by UWB signals as they propagate through the breast. This compensation, while
not perfect due to intra-channel variations in dielectric properties, produces an improved breast image
and enables enhanced detection of tumours located close to regions of fibro-glandular tissue compared
to non-filtered beamformers. Moreover, the proposed method has shown improved clutter-suppression
capabilities due to the normal heterogeneity of breast tissue. Future work will involve the study of the
proposed preprocessing filter on experimental data where shape information will be obtained using a
laser system such as [25].
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