Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-17
A Study on the Numerical Accuracy of the Matrix Elements in a Time Domain MOD Methodology
By
Progress In Electromagnetics Research M, Vol. 33, 185-196, 2013
Abstract
In a time domain Marching-on-in-degree (MOD) solver based on a Galerkin implementation of the Method of Moments (MoM), it is observed that the matrix elements for the matrix to be inverted contain integrals that are similar to the ones encountered in a frequency domain MoM solver using the piecewise triangular patch basis functions. It is also observed that the error in the evaluation of the matrix elements involving these integrals are larger in the time domain than those involved in the frequency domain MoM solvers. The objective of this paper is to explain this dichotomy and how to improve upon them when using the triangular patch basis functions for both the time and the frequency domain techniques. When the distance between the two triangular patches involved in the evaluation of the matrix elements, are close to each other or when the degree of the Laguerre polynomial in a MOD method is high, the integral accuracy will be compromised and the number of sampling points to evaluate the integrals need to be increased. Numerical results are presented to illustrate this point.
Citation
Zicong Mei, Baek-Ho Jung, Yu Zhang, Xun-Wang Zhao, Tapan Kumar Sarkar, and Magdalena Salazar-Palma, "A Study on the Numerical Accuracy of the Matrix Elements in a Time Domain MOD Methodology," Progress In Electromagnetics Research M, Vol. 33, 185-196, 2013.
doi:10.2528/PIERM13070305
References

1. Chung, Y. S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, Dec. 20, 2002.
doi:10.1002/mop.10647

2. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

3. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502

4. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304

5. Chung, Y. S., T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. Jang, and K. Kim, "Solution of time domain electric field integral equation using Laguerre polynomials," IEEE Trans. Antennas and Propagat., Vol. 52, No. 9, 2319-2323, Sept. 2004.
doi:10.1109/TAP.2004.835248

6. Jung, B. H., T. K. Sarkar, Y. S. Chung, M. Salazar-Palma, Z. Ji, S. Jang, and K. Kim, "Transient electromagnetic scattering from dielectric objects using electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE Trans. Antennas and Propagat., Vol. 52, No. 9, 2329-2340, Sept. 2004.
doi:10.1109/TAP.2004.834062

7. Ji, Z., T. K. Sarkar, B. H. Jung, Y. S. Chung, M. Salazar-Palma, and M. Yuan, "A stable solution of time domain electric field integral equation for thin-wire antenna using the Laguerre polynomials," IEEE Trans. Antennas and Propagat., Vol. 52, No. 10, 2641-2649, Oct. 2004.

8. Ji, Z., T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma, "Solving time domain electric field integral equation without the time variable," IEEE Trans. Antennas and Propagat., Vol. 54, No. 1, 258-262, Jan. 2006.
doi:10.1109/TAP.2005.861515

9. Jung, B. H., et al. Time and Frequency Domain Solutions of EM Problems Using Integral Equations and a Hybrid Methodology, John Wiley & Sons, Inc., 2010.
doi:10.1002/9780470892329

10. Mei, Z., Y. Zhang, T. K. Sarkar, B. H. Jung, A. Garcia-Lamperez, and M. Salazar-Palma, "An improved marching-on-in-degree method using a new temporal basis," IEEE Trans. Antennas and Propagat., Vol. 59, No. 12, 4643-4650, Dec. 2011.
doi:10.1109/TAP.2011.2165482

11. Mei, Z., Y. Zhang, T. K. Sarkar, M. Salazar-Palma, and B. H. Jung, "Analysis of arbitrary frequency-dependent losses associated with conducting structures in a time-domain electric field integral equation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 678-681, 2011.

12. Rao, S. M., "Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling,", Ph.D. Dissertation, Univ. Mississippi, Aug. 1980.

13. Rao, S. M., D. R. Wilton, A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

14. Poularikas, A. D., The Transforms and Applications Handbook, 2nd Ed., CRC Press, 2000.
doi:10.1201/9781420036756

15. Gradshteyn, I. S. and I. M. Ryzhik, "Table of Integrals, Series, and Products," Academic Press, New York, 1999.

16. Dunavant, D. A., "High degree efficient symmetrical Gaussian quadrature rules for the triangle," Int. J. Num. Meth. Eng., Vol. 21, 1129-1148, 1985.
doi:10.1002/nme.1620210612