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Abstract—In a time domain Marching-on-in-degree (MOD) solver
based on a Galerkin implementation of the Method of Moments
(MoM), it is observed that the matrix elements for the matrix to be
inverted contain integrals that are similar to the ones encountered in
a frequency domain MoM solver using the piecewise triangular patch
basis functions. It is also observed that the error in the evaluation
of the matrix elements involving these integrals are larger in the time
domain than those involved in the frequency domain MoM solvers. The
objective of this paper is to explain this dichotomy and how to improve
upon them when using the triangular patch basis functions for both
the time and the frequency domain techniques. When the distance
between the two triangular patches involved in the evaluation of the
matrix elements, are close to each other or when the degree of the
Laguerre polynomial in a MOD method is high, the integral accuracy
will be compromised and the number of sampling points to evaluate
the integrals need to be increased. Numerical results are presented to
illustrate this point.
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1. INTRODUCTION

The time domain marching-on-in-degree (MOD) method has been
used for the solution of the transient Method of Moments (MoM)
problems [1–11]. In the MOD method, the unknown variables, such as
the current or the potential functions related to the integral equation
associated with the problem of interest are expanded by a set of both
spatial and temporal basis functions. The spatial basis functions are
generally chosen as the piecewise triangular patch functions known as
the RWG basis [12, 13] whereas the temporal basis functions are chosen
as the Laguerre functions in a Galerkin methodology. In a Galerkin
time domain methodology in the MoM context, associated with the
MOD method, the time variable is analytically integrated out. So the
final equations that are used in the computations have only the spatial
variables. In that context, the expressions for the matrix elements
look very similar to the expressions used in a frequency domain MoM
problem using the same triangular patch basis. The interesting feature
is that even though the expressions for the matrix elements over the
spatial basis functions are similar both in the time and in the frequency
domain the Green’s functions involved are different. Due to a difference
in the Green’s functions it is seen that the matrix elements for the
time domain problem need to be evaluated more accurately using
an increased number of quadrature sampling points for integration
than its frequency domain counterpart. This paper is focused on the
numerical accuracy of the matrix elements in a time domain MOD
method. Many practical examples, such as a tank, a Fokker aircraft,
an AS-322 helicopter, and a Boeing-737 aircraft, have been presented
in [9, 10].

In this work, it is illustrated that the spatial integral accuracy
in the MOD method needs more sampling points to evaluate the
numerical integrals than the frequency domain counterpart in order
to maintain the same integral accuracy. In Section 2 the expressions
for the Green’s functions are presented along with a few numerical
results to illustrate the hypothesis in Section 3 and then followed by
conclusions in Section 4.

2. GREEN’S FUNCTIONS IN THE MATRIX ELEMENTS

For solving currents or potentials on the surfaces of objects, basis
functions and unknown coefficients are needed to represent them. The
scattered fields are presented by an integral of current or potential,
which also equal to an integral of basis functions. If we apply Galerkin’s
method to solve the unknown coefficients, inner products are performed
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by multiplying another basis function to the equation and integrating
them over the whole domain. Then a double integral of two spatial
basis function is major part in the equation to solve the problem.

In the MOD method [9, 10], the spatial integrals involved in the
evaluation of the expressions for the matrix elements are in the form
of
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in which, fm and fn are the spatial RWG basis functions, s is a scaling
factor, R is the distance between the field and the source points, r and
r′, respectively, and c is the velocity of propagation in free space, and
Iab (sR/c) is defined by

Iab(sR/c) =
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(2)

in which the Li is the Laguerre polynomial of the degree i [14, 15]. In
the frequency domain MoM [12, 13], the spatial integrals are defined
in the form of
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in which, j is the imaginary unit and k the wave number.
Between the equations of (1) and (3), the only difference is in the

Green’s function. For the time domain MOD method, the Green’s
function is GTD = Iab(sR/c)/R and for the frequency domain MoM
it is GFD = e−jkR/R. The derivatives of these two Green’s functions
with respect to R can be obtained as
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And also the ratio between the spatial derivatives of the Green’s
functions with respect to the Green’s functions are also calculated as∣∣∣∣

∂GTD/∂R
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Equation (5b) is a monotonically decaying function with respect to
the spatial variables and it does not have any singularities in the
domain R ∈ (0,+∞). But for Eq. (5a), the denominator term
La−b(sR/c)−La−b−1(sR/c) does have zeros in the domain R ∈ (0,+∞)
when b < a. Therefore, Eq. (5a) has some singularities in this region.
Consider a very small error ∆R associated with the evaluation of the
spatial variable R, and this will result in an error in the value of the
Green’s function ∆GTD. The error ∆GTD is given by

∆GTD = ∆R
∂GTD

∂R
(6)

and the corresponding relative error is given by
∣∣∣∣
∆GTD

GTD
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When the value of R is such that the denominator of (5a) is close to
zero, so the Green’s function has a pole, a very small error in R can
result in a large relative error in the value of the Green’s function. In
conclusion, the Green’s function encountered in the MOD method is
more sensitive to the error in the evaluation of R. Generally, the
integrals encountered in (1) and (3) for both a time domain and
a frequency domain problem cannot be handled analytically and a
numerical technique needs to be employed to evaluate them over the
surfaces involved. Since, in the time domain the functions associated
with the integrals have singularities, more sampling points need to be
used in the evaluation of the integrals than in the frequency domain.
So in the evaluation of the integrals in Eq. (1), one will need more
sampling points in the evaluation of the Green’s function than in the
frequency domain in order to maintain similar accuracy in the final
results.

A plot of the two Green’s functions for the time and frequency
domain are displayed in Fig. 1. For the time domain Green’s function
in Fig. 1(a), s is chosen as 5× 109 and the degree a− b is 50 and 150,
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Figure 1. Comparison of Green’s functions. (a) The time domain
Green’s function GTD. (b) The frequency domain Green’s function
GFD.

respectively, which are common values for most practical problems [9].
For the frequency domain Green’s function in Fig. 1(b), k is chosen as
2π. From Fig. 1, we can see that the time domain Green’s function
oscillates more than the frequency domain one, especially when R is
small or the degree a− b is high. Therefore, when R has a small error,
the time domain Green’s function will result in a larger computational
error than the other when using the same number of sample points
to evaluate the integrals. Numerical examples in the evaluation of
Eqs. (1) and (3) will be shown to illustrate this point.

3. NUMERICAL EXAMPLES

In our study, both the time and frequency domain integrals are carried
out using the Gaussian quadrature rules for a triangular region [16]
using the RWG basis functions [13]. We vary the number of sampling
points from 1 to 79 in the evaluation of the integrals encountered in
(1) and (3).

Example 1 considers two triangular spatial basis functions parallel
to each other as shown in Fig. 2. For the time domain Green’s function,
s is chosen as 5×109 and a−b = 50. For the frequency domain Green’s
function, k is chosen to be 2π. The integral values in the evaluation
of the expressions in Eqs. (1a) and (3a) are listed in the Table 1 and
Table 2. Both the expressions converge when one increases the number
of the sampling quadrature points. Because we don’t know a priori,
what are the exact values for the integrals, we consider the results
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Figure 2. The two basis functions for Example 1.
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Figure 3. Relative errors in the evaluation of integrals in Example 1.
(a) ATD

mnab and AFD
mn , (b) BTD

mnab and BFD
mn .

when using 79 points as the one closest to the accurate values. And
the relative error at this value is plotted in Fig. 3. The relative errors
in the time and frequency domains are defined as

ErrorTD(i) =

∣∣ATD
mnab(79)−ATD

mnab(i)
∣∣

∣∣ATD
mnab(79)

∣∣ (8)

and

ErrorFD(i) =

∣∣AFD
mn (79)−AFD

mn (i)
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|AFD
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in which ATD
mnab and AFD

mn are the time and frequency domain integrals
in Eqs. (1a) or (3a) computed with i sampling points, respectively, and
the operator | · | is the absolute value of the function. From Fig. 3(a),
one can observe that when one uses 7 sampling points, which is a very
common case for the computations, the frequency domain integral can
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Table 1. The integral values in the evaluation of Eq. (1a) in
Example 1.

Sampling points i TD

mnab
A

1 +1.196862990017365E-006 

4 –9.185507229096584E-008 

7 –1.415802785348749E-007 

16 –1.520710249941450E-007 

25 –1.503210213166758E-007 

37 –1.502934135708395E-007 

61 –1.502913746203929E-007 

79 –1.502915693675874E-007 

Table 2. The integral values in the evaluation of Eq. (3a) in
Example 1.

Sampling points i FD
mnA  

1 0.1026460570347953E-04 – j 0.1601586946542305E-06 

4 0.7931528008435943E-05 – j 0.1788829860551588E-06 

7 0.6072444309197887E-05 – j 0.1781290363986577E-06 

16 0.6105805417065320E-05 – j 0.1781298635103971E-06 

25 0.6104483239659091E-05 – j 0.1781298635107554E-06 

37 0.6104447874541564E-05 – j 0.1781298635107529E-06 

61 0.6104432328759541E-05 – j 0.1781298635107444E-06 

79 0.6104431829695501E-05 – j 0.1781298635106877E-06 

get an error of less than 1% while the error in the time domain is
around 10%. Similar phenomenon also appears in the evaluation of
the integrals of BTD

mnab and BFD
mn in the Eqs. (1b) and (3b) and their

relative errors are plotted in Fig. 3(b). In this figure, when the number
of sampling point is chosen as 7, the frequency domain integrals has
an error of around 0.1% while the time domain expressions provide a
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relative error of about 10%.
Example 2 uses two triangular patch basis functions that are

perpendicular to each other as shown in Fig. 4. The parameters of
s, k, a, b are the same as in Example 1. The relative error in the
evaluations for the quantities ATD

mnab and AFD
mn are listed in Tables 3

and 4. The relative errors of ATD
mnab and AFD

mn are plotted in Fig. 5(a)
and the relative errors of BTD

mnab and BFD
mn are plotted in Fig. 5(b).

From Fig. 5, one can observe that the errors are much larger than
the ones from Example 1. This is because the time domain Green’s
functions vary over a larger value when R is small as shown in the Fig.
1. In the first example, R is greater than 0.05m, but in this example
some of the values of R are close to zero. As implied in Fig. 1, the error
in the evaluation of the Green’s function is more sensitive to the error
in the evaluation of R for both time and frequency domain cases and
in order to get an accurate value for the integral, more sampling points
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Figure 4. The two basis functions for Example 2.
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Figure 5. Relative errors in the evaluation of integrals in Example 2.
(a) ATD

mnab and AFD
mn , (b) BTD

mnab and BFD
mn .
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Table 3. The integral values in the evaluation of Eq. (1a) in
Example 2.

Sampling points i TD

mnab
A  

1 +3.761504994513267E-007 

4 –1.152579677805389E-006 

7 +9.593733385070720E-008 

16 –1.317525027949061E-007 

25 –9.084526029380924E-008 

37 –8.595394401284385E-008 

61 –7.911876314641855E-008 

79 –7.616760175651086 E-008 

 

(a) (b)

Figure 6. Relative errors in the evaluation of integrals in Example 3.
(a) ATD

mnab and AFD
mn , (b) BTD

mnab and BFD
mn .

are needed. From Fig. 5, we can see that if we use only 7 sampling
points in the time domain solver, the errors are around 110% and 60%,
respectively. These errors are so large that the results of the solver are
unreliable and more sampling points are necessary.

Example 3 is the same as Example 1 except that the degree of a−b
is changed to 150. All other parameters are the same. The relative
errors in the evaluation of ATD

mnab and AFD
mn are plotted in Fig. 6(a)

and the relative errors in the evaluation of BTD
mnab and BFD

mn are plotted
in Fig. 6(b). Comparing these two figures with Figs. 3(a) and 3(b),
one can see that as the degree increases, the errors associated with
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Table 4. The integral values in the evaluation of Eq. (3a) in
Example 2.

Sampling points i FD
mnA  

1 0.8504782549007540E-05 – j 0.1596313625583668E-06 

4 0.1563952782733322E-04 – j 0.1788662643803946E-06 

7 0.1418624593893488E-04 – j 0.1784863698059096E-06 

16 0.1489178854301966E-04 – j 0.1784867859716771E-06 

25 0.1345273330446101E-04 – j 0.1784867859718516E-06 

37 0.1300656612436935E-04 – j 0.1784867859718702E-06 

61 0.1282336903240997E-04 – j 0.1784867859718813E-06 

79 0.1269753806813858E-04 – j 0.1784867859718796E-06 

the integrals associated with the time domain Green’s function also
increase. This is because the time domain Green’s function will vary
more rapidly as the degree gets large as seen in Fig. 1. If we do not
increase the number of sampling points with the increase of degree, the
error will be larger when one uses the MOD solution procedure.

4. CONCLUSIONS

Compared to a frequency domain solver, the error associated with the
evaluation of the matrix elements in a time domain MOD solver is more
sensitive to the error in the evaluation of R than the frequency domain
one. This is because the Green’s function varies faster with respect
to R. Therefore, one needs more sampling points in the numerical
evaluation of the integrals in order to obtain an accurate result. If
one uses the same number of sampling points as in a frequency domain
solver, the errors will be much larger. This is especially important when
the distance between two triangular patches is close to each other or
when the degree of the associated Laguerre polynomials is large.
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