Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-11
General Solution for Waveguide Modes in Fractional Space
By
Progress In Electromagnetics Research M, Vol. 33, 105-120, 2013
Abstract
In this paper, general solution for the electric and magnetic fields are developed using the vector potentials A and F when the wave is propagating in fractional dimensional space. Different field configurations can be analyzed using the developed expressions for electric and magnetic fields, here we have analyzed TEz and TMz modes when the wave propagates in fractional space inside a rectangular waveguide. It is observed that wave propagation behavior in fractional space changes substantially from the non-fractional space. It is also observed that the obtained results show generalization of the concept of solutions for wave propagation from integer to fractional space. As a special case, when all the dimensions are considered integer, then all classical results are recovered.
Citation
Salman Khan, Adnan Noor, and Muhammad Junaid Mughal, "General Solution for Waveguide Modes in Fractional Space," Progress In Electromagnetics Research M, Vol. 33, 105-120, 2013.
doi:10.2528/PIERM13062807
References

1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395

2. Sadallah, M. and S. I. Muslih, "Solution of the equations of motion for Einstein's field in fractional D dimensional space-time ," International Journal of Theoretical Physics, Vol. 48, No. 12, 3312-3318, 2009.
doi:10.1007/s10773-009-0133-8

3. Muslih, S. I. and O. P. Agrawal, "A scaling method and its applications to problems in fractional dimensional space," Journal of Mathematical Physics, Vol. 50, No. 12, 123501-1-123501-11, 2009.
doi:10.1063/1.3263940

4. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

5. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009

6. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974

7. Ashmore, J. F., "On renormalization and complex space-time dimensions," Commun. Math. Phys., Vol. 29, 177-187, 1973.
doi:10.1007/BF01645246

8. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, No. 2-3, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024

9. Muslih, S. I. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001

10. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

11. Ostoja-Starzewski, M., "Electromagnetism on anisotropic fractal media," ZAMP, Vol. 64, No. 2, 381-390, 2013.
doi:10.1007/s00033-012-0230-z

12. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetic Research, Vol. 114, 255-269, 2011.

13. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Analysis B: Real World Applications, Vol. 12, No. 5, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010

14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.

15. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field n fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.

16. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications,, Vol. 25, No. 10, 1481-1491, 2011.

17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "Electromagnetic fields and waves in fractional dimensional space," Springer Brifes in Applied Sciences and Technology, XII, 76, Springer, Germany, Jan. 28, 2012.

18. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.

19. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402

20. Mughal, M. J. and M. Zubair, "Fractional space solutions of antenna radiation problems: An application to hertzain dipole," IEEE 19th Conference on Signal Processing and Communications Applications (SIU), 62-65, Apr. 20-22, 2011, doi: 10.1109/SIU.2011.5929587.

21. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multi-band multi-polarised SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001

22. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
doi:10.2528/PIER10032003

23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

24. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512

25. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

26. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research, Vol. 28, 229-244, 2013.

27. Asad, H., M. Zubair, M. J. Mughal, and Q. A. Naqvi, "Electromagnetic green functions for fractional space," Journal of Electromagnetic Wave and Application,, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748

28. Balankin, S. A., et al. "Electromagnetic fields in fractal continua," Physics Letters A, Vol. 377, 783-788, 2013.
doi:10.1016/j.physleta.2013.01.030