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Abstract—In this paper, general solution for the electric and
magnetic fields are developed using the vector potentials A and F
when the wave is propagating in fractional dimensional space. Different
field configurations can be analyzed using the developed expressions
for electric and magnetic fields, here we have analyzed TE z and
TM z modes when the wave propagates in fractional space inside a
rectangular waveguide. It is observed that wave propagation behavior
in fractional space changes substantially from the non-fractional space.
It is also observed that the obtained results show generalization of the
concept of solutions for wave propagation from integer to fractional
space. As a special case, when all the dimensions are considered
integer, then all classical results are recovered.

1. INTRODUCTION

Most objects have irregular shapes and cannot be modeled using
Euclidean geometry. For example, the branching of trees, waves in
ocean, cloud, dust particles and many more. As a result of the
abundance of irregular geometrical objects in nature, the idea of
fractals and non-fractals originated [1–3]. First proper classification of
mediums into fractals and non-fractals was done by Mandelbrot [4].
The abundance of fractals in nature resulted in research into the
formulation of laws of physics for fractional spaces. Palmer and
Stavrinou worked on equations of motion in a non-integer dimensional
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space [5]. Similarly, Tarasov analyzed Electromagnetic fields on
fractals [6]. And other researchers also made their efforts in explaining
physical phenomena in fractals [7, 8].

Generalization of electromagnetics in fractals has been studied at
length. Resultantly solutions of Laplace and Poisson’s equations have
been reformulated in fractional dimensional space [9, 10]. Similarly
Faraday’s law and Ampere’s law as well as Maxwell’s electromagnetic
stress tensor have been reformulated in fractals by Martin et al. [11].

Differential electromagnetic equations are also developed [12]
resulting in wave equation and general plane wave solutions in
fractals [14]. Cylindrical and Spherical wave equations have also
been expressed in fractals [15, 16]. Vector potentials have been also
developed in fractional space, which further made the analysis of
electromagnetics easy. Antenna radiations can be analyzed using these
vector potentials. Mughal and Zubair first remodeled this idea in
fractional space and then analyzed dipole antenna placed in fractional
space and many parameters like directivity and radiation pattern of
dipole antenna were analyzed in the domain of fractional space [20].
Proceeding the journey of electromagnetic in fractals, reflection and
transmission co-efficient in many scenarios have been studied at length.
When a wave passes through a layer of fractal sandwiched between
non-fractals then reflection and transmission will occur which was
analytically modeled by Attiya [18]. Similarly reflection co-efficient
was analyzed at an interface which is developed when a half space
of fractal meet another half space of non-fractal [19]. Also reflection
from a fractal-fractal interface analyzed by Omar and Mughal [26].
This idea was utilized further by them in developing reflection and
transmission coefficients for chiral-fractal dielectric interface where
half space was assumed chiral and second half space as fractal. It
was observed in all these cases that the dimension plays a very
important role in the reflection and transmission of a wave from such
interfaces. Electromagnetic radiations from fractal structures have
been an area of interest in past few years [21–24]. Most of the concepts
of wave propagation phenomena in fractional space have been compiled
together by Zubair et al. in [13, 17]. Green’s function for fractional
space was developed by Asad in fractional space [27].

In this paper, general solutions for electromagnetic wave is
developed and electromagnetic field configurations are analyzed in
fractional space. In first Section, analytical expressions for general
solution is constructed in fractional space. Both electric field and
magnetic field are expressed in terms of vector potentials in fractional
space. Many field configurations can be generated and analyzed, here
TE z and TM z have been modeled mathematically. In Section 3,
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it is observed that all these solutions and field configurations are
a generalization of these results from integer dimensional space to
fractional space. When we consider a special case of integer dimensions
in the expressions developed here, then all results in Euclidean space
can be recovered which shows complete agreement with the classical
results. Further TM z and TE z are analyzed in a rectangular waveguide
and observed that there are substantial changes in wave propagation in
fractal media from that in non-fractal media. And when we consider
integer dimensions for the case of rectangular waveguide, then it is
again observed that all classical results can be recovered. In the last
section, conclusions are drawn.

2. CONSTRUCTION OF GENERAL SOLUTIONS IN
FRACTIONAL SPACE

As we already know, total electric field in fractional space in terms of
vector potentials A and F can be written as [12],

E = −jωA− j
1

ωµε
∇D(∇D ·A)− 1

ε
∇D × F (1)

and similarly total magnetic field in fractional space in terms of vector
potentials A and F can be written as [12],

H = −jωF− j
1

ωµε
∇D(∇D · F) +

1
µ
∇D ×A (2)

where the subscript D in gradient and divergence operators signifies
that these are the operators used in fractional space as developed by
Zubair et al. [12]. The vector potentials A and F can have the form

A(x, y, z) = âxAx(x, y, z) + âyAy(x, y, z) + âzAz(x, y, z) (3)
F(x, y, z) = âxFx(x, y, z) + âyFy(x, y, z) + âzFz(x, y, z) (4)

which must satisfy the following equations in source free region [20],

∇2
DA + β2A = 0 (5)
∇2

DF + β2F = 0 (6)
Here ∇2

D represents the Laplacian operator in fractional space [12]. It
is also observed that the gradient operator in fractional space takes the
form as [28],

∇Df = x̂

[
1+

x

`o

]1−ζx ∂

∂x
f+ŷ

[
1+

y

`o

]1−ζy ∂

∂y
f+ẑ

[
1+

z

`o

]1−ζz ∂

∂z
f (7)

whereas divergence operator in fractional space is defined as

∇D ·f =
[
1+

x

`o

]1−ζx ∂

∂x
fx+

[
1+

y

`o

]1−ζy ∂

∂y
fy+

[
1+

z

`o

]1−ζz ∂

∂z
fz (8)



108 Khan, Noor, and Mughal

Here ζx, ζy, and ζz are used to measure the extent of fractionality
along three dimensions. Their values lie in the range of 0–1, where
1 represents integer dimension and any value less than 1 signifies
fractionality along the corresponding dimension. Equation (1) when
expanded using Equations (3), (4) and Equations (7), (8) can be
written as

E = x̂

[
−jωAx − j

1
ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

x

`o

]1−ζx ∂

∂x
Ax

+
[
1 +

y

`o

]1−ζy ∂

∂y
Ay +

[
1 +

z

`o

]1−ζz ∂

∂z
Az

)
− 1

ε
(∇D×F ) · âx

]

+ŷ

[
−jωAy − j

1
ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

x

`o

]1−ζx ∂

∂x
Ax

+
[
1+

y

`o

]1−ζy ∂

∂y
Ay +

[
1 +

z

`o

]1−ζz ∂

∂z
Az

)
− 1

ε
(∇D × F ) · ây

]

+ẑ

[
−jωAz − j

1
ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

x

`o

]1−ζx ∂

∂x
Ax

+
[
1 +

y

`o

]1−ζy ∂

∂y
Ay+

[
1+

z

`o

]1−ζz ∂

∂z
Az

)
− 1

ε
(∇D × F ) · âz

]
(9)

and similarly H can be expanded from Equation (2), using
Equations (3), (4) and Equations (7), (8), to the following form

H = x̂

[
−jωFx − j

1
ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

x

`o

]1−ζx ∂

∂x
Fx

+
[
1 +

y

`o

]1−ζy ∂

∂y
Fy+

[
1+

z

`o

]1−ζz ∂

∂z
Fz

)
− 1

ε
(∇D ×A) · âx

]

+ŷ

[
−jωFy − j

1
ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

x

`o

]1−ζx ∂

∂x
Fx

+
[
1 +

y

`o

]1−ζy ∂

∂y
Fy+

[
1+

z

`o

]1−ζz ∂

∂z
Fz

)
− 1

ε
(∇D×A) · ây

]

+ẑ

[
−jωFz − j

1
ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

x

`o

]1−ζx ∂

∂x
Fx
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+
[
1+

y

`o

]1−ζy ∂

∂y
Fy+

[
1+

z

`o

]1−ζz ∂

∂z
Fz

)
− 1

ε
(∇D×A) · âz

]
(10)

Here we can clearly see that the fractionality terms are introduced into
the classical solutions for the field expressions in fractional space. They
show generalization from integer to non-integer dimensional space. It
is obvious from these expressions that classical results as obtained by
Balanis [25] can be recovered upon inserting the values of dimensions
as integers. Different field configurations can be analyzed in fractional
space using the expressions developed for E and H. Following Sections
cover TM z and TE z modes. Other modes can be analyzed accordingly.

2.1. Transverse Magnetic Mode in Fractal Media, TM z:
Source Free Region

TM mode are field configurations in which the magnetic field
components are lying in a plane that is transverse to a given direction.
For example, if the fields are TM to z (or TM z), this means that
Hz = 0. And the remaining two magnetic field components, (Hy and
Hx), and the three electric field components (Ez, Ey and Ex) may or
may not exist.

As it is obvious that to derive the field expressions for a field
configuration that are transverse magnetic to a given direction,
irrespective of the coordinate system, it is a sufficient assumption
to let the vector potential A to have only a component in that
direction in which the fields are considered to be transverse magnetic.
The remaining components of the vector potential A as well as all
components of F are set equal to zero. Therefore for TM z modes, we
let

A = âzAz(x, y, z) (11)
and

F = 0 (12)
where A must satisfy the following reduced equation.

∇2
DAz + β2Az = 0 (13)

First we need to find the solution for Az from Equation (13). Once
the solution for Az is found, then the next step is to use that solution
to find the E and H field components from Equations (9) and (10) as,

Ex=−j
1

ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(14)

Ey =−j
1

ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(15)
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Ez =−jωAz − j
1

ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(16)

and

Hx=
1
µ

[
1 +

y

`o

]1−ζy ∂

∂y
Az (17)

Hy =− 1
µ

[
1 +

x

`o

]1−ζx ∂

∂x
Az (18)

Hz =0 (19)

For a specific problem, we need to find out the solution for
vector potential Az, and then applying proper boundary conditions
after evaluating Equations (14) to (19) will lead us to the final
expressions for E and H field components. This is demonstrated
further in last Section. Following similar approach, we can reach to
the electromagnetic wave solutions for TM x and TM y modes of field
configurations.

2.2. Transverse Electric Mode in Fractal Media, TEz:
Source Free Region

TE mode are field configurations in which the electric field components
are lying in a plane that is transverse to a given direction. For example,
if the fields are TE to z (or TE z), this means that Ez = 0. And the
remaining two electric field components, (Ey and Ex), and the three
magnetic field components (Hz, Hy and Hx) may or may not exist.

As it is obvious that to derive the field expressions for a
field configuration that are transverse electric to a given direction,
irrespective of the coordinate system, it is a sufficient assumption to
let the vector potential F to have only a component in that direction in
which the fields are considered to be transverse electric. The remaining
components of the vector potential F as well as all components of A
are set equal to zero. Therefore for TE z modes, we let

A = 0 (20)

and
F = âzFz(x, y, z) (21)

where F must satisfy the following reduced equation

∇2
DFz + β2Fz = 0 (22)

Once Fz is found, then the next step is to find the E and H
field components by using the following equations reduced from
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Equations (9) and (10),

Ex=−1
ε

[
1 +

y

`o

]1−ζy ∂

∂y
Fz (23)

Ey =
1
ε

[
1 +

x

`o

]1−ζx ∂

∂x
Fz (24)

Ez =0 (25)

Hx=−j
1

ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(26)

Hy =−j
1

ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(27)

Hz =−jωFz − j
1

ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(28)

For a specific problem, we need to find out the solution for vector
potential Fz, and then applying proper boundary conditions after
evaluating Equations (23) to (28) will lead us to the final expressions
for E and H field components. This is demonstrated further in
last Section. Following similar approach, we can reach to the
electromagnetic wave solutions for TEx and TE y modes of field
configurations.

3. RESULTS AND DISCUSSION

All the equations developed so far in this paper represent generalization
of the wave propagation concept to fractional space from integer
dimensional space. As a special case, considering all dimensions
integer, this problem shrinks to the classical wave propagation concept.
That is, if we consider ζx = ζy = ζz = 1, then

E = x̂

[
−jωAx−j

1
ωµε

∂

∂x

(
∂

∂x
Ax+

∂

∂y
Ay+

∂

∂z
Az

)
− 1

ε
(∇×F )·âx

]
(29)

+ŷ

[
−jωAy−j

1
ωµε

∂

∂y

(
∂

∂x
Ax+

∂

∂y
Ay+

∂

∂z
Az

)
− 1

ε
(∇×F )·ây

]
(30)

+ẑ

[
−jωAz−j

1
ωµε

∂

∂z

(
∂

∂x
Ax+

∂

∂y
Ay+

∂

∂z
Az

)
−1

ε
(∇×F )·âz

]
(31)

and

H=x̂

[
−jωFx − j

1
ωµε

∂

∂x

(
∂

∂x
Fx+

∂

∂y
Fy+

∂

∂z
Fz

)
+

1
µ

(∇×A)·âx

]
(32)
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+ŷ

[
−jωFy−j

1
ωµε

∂

∂y

(
∂

∂x
Fx+

∂

∂y
Fy+

∂

∂z
Fz

)
+

1
µ

(∇×A)·ây

]
(33)

+ẑ

[
−jωFz−j

1
ωµε

∂

∂z

(
∂

∂x
Fx+

∂

∂y
Fy+

∂

∂z
Fz

)
+

1
µ

(∇×A)·âz

]
(34)

which shows complete agreement with the classical expressions for the
wave behavior as developed by Balanis [25].

As an example, consider a rectangular waveguide of dimensions a
and b with a > b. Assuming the waveguide is filled with fractal media
with all axis fractional. The fractionality along x-axis is represented by
ζx, the fractionality along y-axis is represented by ζy, and along z-axis
by ζz. Then Transverse Electric and Transverse Magnetic modes can
be analyzed as following.

3.1. TM

As already mentioned, TM z electric and magnetic fields obey the
following mathematical expressions:

Ex=−j
1

ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(35)

Ey =−j
1

ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(36)

Ez =−jωAz − j
1

ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

z

`o

]1−ζz ∂

∂z
Az

)
(37)

and

Hx=
1
µ

[
1 +

y

`o

]1−ζy ∂

∂y
Az (38)

Hy =− 1
µ

[
1 +

x

`o

]1−ζx ∂

∂x
Az (39)

Hz =0 (40)

The potential A must satisfy the following differential equation,

∇2
DAz(x, y, z) + β2Az(x, y, z) = 0 (41)

The solution for the potential A can be obtained for considering only
positive traveling waves using the analogy with the integer dimensional
space as,

Az(x, y, z)=xn1yn2zn3 [C1Jn1(βxx)] [C2Jn2(βyy)]
[
C3H

(2)
n3

(βzz)
]

(42)
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where

n1 = 1− ζx

2

n2 = 1− ζy

2

n3 = 1− ζz

2

(43)

Using Equation (35) through (42) and applying the boundary
conditions at the walls of the waveguide lead us to following electric
field and magnetic field equations,

E+
x =−B′

mn

j

ωµε
yn2Jn2(βyy)

[
1 +

x

`o

]1−ζx
[
1 +

z

`o

]1−ζz ∂2

∂x∂z

[xn1zn3Jn1(βxx)Hn3(βzz)] (44)

E+
y =−B′

mn

j

ωµε

[
1 +

y

`o

]1−ζy
[
1 +

z

`o

]1−ζz

xn1Jn1(βxx)
∂2

∂y∂z

(yn2zn3Jn2(βyy)Hn3(βzz)) (45)

E+
z =−jB′

mn

[
ω(xn1yn2zn3 [Jn1(βxx)][Jn2(βyy)][H(2)

n3
(βzz)])

+
1

ωµε
xn1yn2Jn1(βxx)Jn2(βyy)

[
1 +

z

`o

]1−ζz ∂

∂z[
zn3

[
1 +

z

`o

]1−ζz

Hn3(βzz)

]]
(46)

H+
x = B′

mn

1
µ

xn1zn3

[
1+

y

`o

]1−ζy

Jn1(βxx)H(2)
n3

(βzz)
∂

∂y
(yn2Jn2(βyy)) (47)

H+
y =−B′

mn

1
µ

yn2zn3

[
1+

x

`o

]1−ζx

Jn2(βyy)H(2)
n3

(βzz)
∂

∂x
(xn1Jn1(βxx))(48)

H+
z = 0 (49)

and applying the boundary conditions on field expressions at the walls
along y-axis for y = yo and y = y1, we can find out numerically the
solution for βy from the following simultaneous equations,

yn2
o Jn2(βyyo) = 0 (50)

and
yn2
1 Jn2(βyy1) = 0 (51)

similarly applying the boundary conditions on field expressions at the
walls along x-axis for x = xo and x = x1, we can numerically find the
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solution for βx from the following simultaneous equations,
xn1

o Jn1(βxxo) = 0 (52)
and

xn1
1 Jn1(βxx1) = 0 (53)

The cutoff frequency can be computed from the following expression,
β2

z = β2 − β2
x − β2

y (54)
Since variations along all the three fractional axes are defined by
Bessel functions and Hankel function, which are orthogonal hence
verifying that different modes are orthogonal as well. For a waveguide
filled with fractional space having dimensions of D = 2.76, the wave
propagation is depicted in Figure 1. Its clear from the plot that
the wave propagation is observing Hankel function variations along
fractional z-axis. The planar view for the same waves propagating is
shown in Figure 3. The effect of fractionality is obvious from the planar
view as well.

Upon considering all axis to be integer dimensional, that is
focusing on the special classical case, then the order for each axis
become equal to 1/2, i.e., n1 = n2 = n3 = 1/2 and the Bessel and
Hankel functions get reduced to [25],

H
(2)
1
2

(βzz)=j

√
2

πβzz
e−jβzz (55)

J 1
2
(βxx)=

√
2

πβxx
sin(βxx) (56)

Figure 1. Cross section of a
rectangular waveguide filled with
fractal media, with dimension (D)
equal to 2.76, showing the trans-
verse electric field propagation.

Figure 2. Cross section of a rect-
angular waveguide filled with non-
fractal, with dimension (D) equal
to 3, media showing the trans-
verse electric field propagation.
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Y 1
2
(βyy)=

√
2

πβyy
cos(βyy) (57)

and all the results obtained in this section gets reduced to the following
equations:

E+
x =−Bmn

βxβy

ωµε
cos(βxx) sin(βyy)e−j(βzz) (58)

E+
y =−Bmn

βyβz

ωµε
sin(βxx) cos(βyy)e−j(βzz) (59)

E+
z =−jBmn

β2
c

ωµε
sin(βxx) sin(βyy)e−j(βzz) (60)

H+
x =Bmn

βy

µ
sin(βxx) cos(βyy)e−j(βzz) (61)

H+
y =−Bmn

βx

µ
cos(βxx) sin(βyy)e−j(βzz) (62)

H+
z =0 (63)

The wave propagation in the waveguide filled with integer dimensional
space, i.e., D = 3, is graphically shown is shown in Figure 2. Its planar
view is drawn in Figure 4. Both of these plots are verifying that the
wave propagation follows cosine function variation along the integer
dimensional z-axis which shows complete agreement with the results
obtained by Balanis [25].

10
15

20
25

81012141618
-0.1

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

z

Wave Propagation

x

A
m

pl
itu

de

Figure 3. Planar view of the
wave propagation along z-axis in
rectangular waveguide filled with
fractal media with dimension (D)
equal to 2.76.
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Figure 4. Planar view of the
wave propagation along z-axis in
rectangular waveguide filled with
non-fractal media with dimension
(D) equal to 3.
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3.2. TE

As already mentioned, TE z electric and magnetic fields get satisfied
by the following set of equations:

Ex=−1
ε

[
1 +

y

`o

]1−ζy ∂

∂y
Fz (64)

Ey =
1
ε

[
1 +

x

`o

]1−ζx ∂

∂x
Fz (65)

Ez =0 (66)

Hx=−j
1

ωµε

[
1 +

x

`o

]1−ζx ∂

∂x

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(67)

Hy =−j
1

ωµε

[
1 +

y

`o

]1−ζy ∂

∂y

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(68)

Hz =−jωFz − j
1

ωµε

[
1 +

z

`o

]1−ζz ∂

∂z

([
1 +

z

`o

]1−ζz ∂

∂z
Fz

)
(69)

where the potential F must satisfy the following differential equation,

∇2
DFz(x, y, z) + β2Fz(x, y, z) = 0 (70)

The solution for the potential F can be obtained for considering
only positive traveling waves using the analogy with the integer
dimensional space as,

Fz(x, y, z)=xn1yn2zn3 [C1Yn1(βxx)] [C2Yn2(βyy)]
[
C3H

(2)
n3

(βzz)
]

(71)

Using Equation (64) through (71) and applying the boundary
conditions at the walls of the waveguide lead us to following electric
field and magnetic field equations,

E+
x =−A′mn

1
ε
xn1zn3

[
1 +

y

`o

]1−ζy

Yn1(βxx)
[
n2y

n2−1Yn2(βyy) + βyy
n2−1Y ′

n2
(βyy)

]
H(2)

n3
(βzz) (72)

E+
x = A′mn

1
ε
yn2zn3

[
1 +

x

`o

]1−ζx

Yn2(βyy)
[
n1x

n1−1Yn1(βxx) + βxxn1Y ′
n1

(βxx)
]
H(2)

n3
(βzz) (73)

E+
z = 0 (74)

H+
x =−A′mn

j

ωµε

[
1 +

x

`o

]1−ζx
[
1 +

z

`o

]1−ζz ∂2

∂x∂z
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[
xn1yn2zn3Yn1(βxx)Yn2(βyy)H(2)

n3
(βzz)

]
(75)

H+
y =−A′mn

j

ωµε

[
1 +

y

`o

]1−ζy
[
1 +

z

`o

]1−ζz ∂2

∂y∂z[
xn1yn2zn3Yn1(βxx)Yn2(βyy)H(2)

n3
(βzz)

]
(76)

H+
z =−jωFz − j

1
ωµε

xn1yn2Yn1(βxx)Yn2(βyy)
∂

∂z((
1 +

z

`o

)1−ζz ∂

∂z

(
zn
3 H(2)

n3
(βzz)

))
(77)

where βy can be computed numerically from the following simultaneous
equations which are derived from the boundary conditions,

n2y
n2−1
o Yn2(βyyo) + βyY

′
n(βyyo)=0 (78)

n2y
n2−1
1 Yn2(βyy1) + βyY

′
n(βyy1)=0 (79)

where yo and y1 represent the position of the walls of waveguide along
the y-axis where the boundary conditions are applied. Similarly, βx can
be computed numerically from the following simultaneous equations as
well,

n1x
n1−1
o Yn1(βxxo) + βxY ′

n(βxxo)=0 (80)

n1y
n1−1
1 Yn1(βxx1) + βxY ′

n(βxx1)=0 (81)

where xo and x1 represent the position of the walls of waveguide along
the x-axis where the boundary conditions are applied. The cutoff
frequency can be computed from the following expression,

β2
z = β2 − β2

x − β2
y (82)

Here orthogonality of the modes is also obvious from the Bessel
function and Hankel function dependency of the wave propagation
along fractional axes. Now if we consider ζx = ζy = ζz = 1, that is
we restrict our problem only to the classical one, then the Bessel and
Hankel functions get reduced to Equations (55)–(57), and the fields
expressions get evaluated as following,

E+
x = Amn

βy

ε
cos(βxx) sin(βyy)e−j(βzz) (83)

E+
y = −Amn

βx

ε
sin(βxx) cos(βyy)e−j(βzz) (84)

E+
z = 0 (85)

H+
x = Amn

βxβz

ωµε
sin(βxx) cos(βyy)e−j(βzz) (86)
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H+
y = Amn

βyβz

ωµε
cos(βxx) sin(βyy)e−j(βzz) (87)

H+
z = −jAmn

β2
c

ωµε
cos(βxx) cos(βyy)e−j(βzz) (88)

which shows complete correspondence with the one obtained by
Balanis [25].

4. CONCLUSIONS

General solutions for electromagnetic wave is developed and
electromagnetic field configurations are analyzed in fractional
space. Analytical expressions for general solution is constructed in
fractional space. Both electric field and magnetic field are expressed
mathematically in terms of vector potentials in fractional space.
Based on the constructed solutions, many field configurations can be
generated and analyzed, here we have discussed TE z and TM z modes.
First we developed their mathematical models. Then further TM z

and TE z are analyzed in a rectangular waveguide and observed that
there are substantial changes in wave propagation in fractal media from
that in non-fractal media. It is observed that all these solutions and
field configurations are a generalization of these results from integer
dimensional space to fractional space. When we consider a special
case of integer dimensions in the expressions developed here, then
all results in Euclidean space can be recovered which shows complete
agreement with the classical results. Different waveguide systems filled
with fractal media can be analyzed using techniques developed here.
This work can be utilized in analyzing any field configuration. This
idea can also be extended to other co-ordinate systems and can be
utilized in constructing solution in cylindrical and spherical co-ordinate
systems and analyzing their respective field configurations.
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