Vol. 42
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-08-27
Improved Analytical Method for Plasma Electron Density Measurement by Resonant Cavity Perturbation Theory
By
Progress In Electromagnetics Research Letters, Vol. 42, 79-88, 2013
Abstract
A method of plasma density measurement based on microwave resonant cavity perturbation (Kornegay [13]) is described. Resonant cavity theory was analyzed and a resonant cavity with special structure was designed for measuring the low density plasma. In the middle of the closed cavity, there were cut-off tubes which were extended a little into the cavity to get through the plasma. It was found that the distribution of the electrical field intensity was the densest near the cut-off tubes when the cylindrical cavity operating with TM010 mode. By using the method of resonant equivalent circuit analysis, both the amplitudes and phases of the Scattering matrices (S matrices) were obtained before the plasma came and at the time of the plasma passing through. Then the electron line density (Ne) and the electron-molecule collision frequency for momentum transfer (vm) were calculated. A modified formula was proposed based on our simulation which was conducted in HFSS and experimental results. With the comparison of our results and Kornegay's, it was found that the accuracy of the plasma dielectric constant calculation was improved about 5 percent.
Citation
Junjian Mao, Pu Tang, Yanfei Zhou, Liping Yuan, and Wuqiong Luo, "Improved Analytical Method for Plasma Electron Density Measurement by Resonant Cavity Perturbation Theory," Progress In Electromagnetics Research Letters, Vol. 42, 79-88, 2013.
doi:10.2528/PIERL13062804
References

1. Robert, M., "Analysis of electromagnetic wave propagation in a magnetized re-entry plasma sheath via the Kinetic equation,", NASA/TM-2009-21096, National Aeronautics and Space Administration, Manning Glenn Research Center, Cleveland, Ohio, 2009.
doi:10.2514/3.4210

2. Wilson, L. N., "The far wake behavior of hypersonic cones," AIAA J., Vol. 5, No. 8, 1393-1396, 1967.
doi:10.1109/27.57528

3. Vidmar, R. J., "On the use of atmospheric pressure plasma as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 73, 1990.
doi:10.1063/1.1655916

4. Burkley, C. J. and M. C. Sexton, "Measurement of plasma electron distributions using microwave cavities," J. Appl. Phys., Vol. 39, 5013, 1968.
doi:10.1088/0963-0252/16/1/009

5. Persson, K. B. and E. G. Johnson, "The errors in plasma measurements by the microwave cavity techniques," , Technical Note 607, 1971.

6. Chang, C. H., C. H. Hsieh, H. T. Wang, et al. "A transmission-line microwave interferometer for plasma electron density measurement," Plasma Sources Sci. Technol., Vol. 16, 67, 2007.

7. Laroussi, M. and R. J. Vidmar, "Numerical calculation of the reflection absorption and transmission of microwaves by a nonuniform plasma," IEEE Transactions on Plasma Science, Vol. 2, No. 3, 731-741, 1990.
doi:10.1109/TAES.1971.310328

8. Gibsonw, E. and P. V. Marrone, "A similitude for non-equilibrium phenomena in hypersonic flight," AGARD Meeting on High Temperature Aspects of Hypersonic Fluid Dynamics, 105-131, Brussels, Belgium, Apr. 1962.

9. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-7, No. 5, 879-894, 1971.

10. Heald, M. A. and C. B. Wharton, Plasma Diagnostics with Microwaves, John Wiley and Sons Inc., New York; London; Sydney, 1965.
doi:10.1063/1.1706129

11. Charles, J. and C. Brown, "Plasma diagnostics," , Technical Report, 454, Aug. 15, 1966.
doi:10.1109/TAES.1968.5408956

12. Spitzer, L., Physics of Fully Ionizes Gases, 2nd Edition, Inter Science, New York, 1967.

13. Buchsbaum, S. J., L. Mower, and S. C. Brown, "Interaction between cold plasmas and guided electromagnetic waves," Phys. Fluids, Vol. 3, No. 5, 806-819, 1960.

14. Kornegay, W. M., "Resonant cavity measurements of ionized wakes," IEEE Transactions on Aerospace and Electronic Systems, Vol. 4, No. 2, 181-186, May 1968.

15. Laroussi, M. and J. R. Roth, "Numerical calculation of the reflection absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 2, No. 4, 36, 1993.
doi:10.1109/8.144594

16. Leich, M., "All optical tree network for interference-free distance multiplexing," Electronics Letters, Vol. 31, No. 22, 19-32, Oct. 26, 1995.
doi:10.1109/TAES.1967.5408760

17. Wan, K.-W. and J. Austin, "A novel approach to the simultaneous of phase and amplitude noise of oscillators," IEEE Transactions on Instrumentation and Measurement, Vol. 40, No. 3, 140-144, 1991.
doi:10.1109/MWSYM.2003.1212639

18. Tuovinen, J., T. M. Hirvonen, and A. V. Raisanen, "Near-field analysis of a thick lens and horn combination: Theory and Measurements," IEEE Trans. Ant. Prop., Vol. 40, No. 6, 613-619, Jun. 1992.

19. Hayami, R., K. Kelley, et al. "Open microwave resonators for ionized wake measurement," IEEE Transactions on Aerospace and Electronic Systems, Vol. 3, No. 2, 339-348, Mar. 1967.

20. Ikeda, M., T. Fukunaga, and T. Miura, "Influence of sample inser-tion hole on resonant cavity perturbation measurement method," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1423-1426, 2003.

21. Po, H. T., H. Kawada, and Y. Kohayashi, "Permittivity measurement of dielectric rod samples using a TM010 mode circular cavity," Proc. 2001, Electron. Soc. Conf. of IEICE, C-2-75, 2001 (in Japanese).