Vol. 32
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-13
An Efficient Scheme for Analysis of Electromagnetic Scattering from Target and Environment Composite Model
By
Progress In Electromagnetics Research M, Vol. 32, 157-167, 2013
Abstract
We present an efficient scheme for the analysis of electromagnetic scattering from target and environment composite model. In this scheme, the whole computed domain is divided into a target part and an environment part, and each part is formulated by different integral equations. The two parts are solved one by one until the relative residual error is less than a given value. Compared with conventional solution with pure electric field integral equation (EFIE), the proposed scheme has a better convergence and lower memory requirement. Additionally, the multilevel fast multipole algorithm (MLFMA) is utilized to accelerate the computations of matrix vector product. Simulated radar-cross-section (RCS) results of several examples demonstrate its validity and efficiency.
Citation
Min Wang, Jialin Chen, and Yanjie Cao, "An Efficient Scheme for Analysis of Electromagnetic Scattering from Target and Environment Composite Model," Progress In Electromagnetics Research M, Vol. 32, 157-167, 2013.
doi:10.2528/PIERM13061907
References

1. Michalski, K. A. and D. L. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. on Antennas and Propag., Vol. 38, No. 3, 335-344, Mar. 1990.
doi:10.1109/8.52240

2. Michalski, K. A., D. L. Zheng, and , "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces," IEEE Trans. on Antennas and Propag., Vol. 38, No. 3, 345-352, Mar. 1990.
doi:10.1109/8.52241

3. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. on Antennas and Propag., Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597

4. Coifman, R., V. Rokhlin, and S. M. Wandzura, "The fast multipole method (FMM) for the wave equation: A pedestrian prescription," IEEE Trans. on Antennas and Propag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

5. Chen, J., S. Li, and M. Wang, "Targets identification method based on electromagnetic scattering analysis," 2011 IEEE CIE International Conference on Radar, Vol. 2, 1647-1651, Oct. 2011.

6. Chen, J., S. Li, and Y. Song, "Analysis of electromagnetic scattering problems by means of a VSIE-ODDM-MLFMA method," ACES Journal, Vol. 27, No. 8, 660-667, Aug. 2012.

7. Chen, J., M. Wang, S. Li, M. Zhu, J. Yu, and X. Li, "An IE-ODDM scheme combined with e±cient direct solver for 3D scattering problems," Micro. Opt. Tech. Lett., Vol. 55, No. 9, 2027-2033, Sep. 2013.
doi:10.1002/mop.27742

8. Chang, X. and L. Tsang, "A new efficient method for modeling dense via arrays with 1D method of moment and group T matrix," 2012 Electrical Performance of Electronic Packaging International Symposium, 163-166, Tempe, AZ, USA, Oct. 2012.

9. Tsang, L. and X. Chang, "Modeling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T matrix method," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, 315-327, Feb. 2013.
doi:10.1109/TCPMT.2012.2220771

10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. on Antennas and Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

11. Ergul, O. and L. Gurel, "Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces," IEEE Antennas Propag. Symp., Vol. 4B, 289-292, Jul. 2005.

12. Gurel, L. and O. Ergul, "Extending the applicability of the combined-field integral equation to geometries containing open surfaces," IEEE Antennas and Wirel. Propag. Lett., Vol. 5, 515-516, 2006.
doi:10.1109/LAWP.2006.887552

13. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. on Antennas and Propag., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378

14. Chen, H. T., G. Q. Zhu, J. X. Luo, and F. Yuan, "A modified MoM-PO method for analyzing wire antennas near to coated PEC plates," IEEE Trans. on Antennas and Propag., Vol. 56, No. 6, 1818-1822, Jun. 2008.
doi:10.1109/TAP.2008.923371

15. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equation of electromagnetic scattering," Micro. Opt. Tech. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

16. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Micro. Opt. Tech. Lett., Vol. 7, No. 10, 466-470, Jul. 1994.
doi:10.1002/mop.4650071013

17. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. on Antennas and Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

18. Shao, H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

19. Ping, X. W., T.-J. Cui, and W. B. Lu, "The combination of BCGSTAB with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

20. Peng, Z., X.-Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

21. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001

22. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. de Zutter, and W. de Raedt, "Simulation and experimental verification of w-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104

23. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603