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Abstract—We present an efficient scheme for the analysis of
electromagnetic scattering from target and environment composite
model. In this scheme, the whole computed domain is divided into
a target part and an environment part, and each part is formulated
by different integral equations. The two parts are solved one by one
until the relative residual error is less than a given value. Compared
with conventional solution with pure electric field integral equation
(EFIE), the proposed scheme has a better convergence and lower
memory requirement. Additionally, the multilevel fast multipole
algorithm (MLFMA) is utilized to accelerate the computations of
matrix vector product. Simulated radar-cross-section (RCS) results
of several examples demonstrate its validity and efficiency.

1. INTRODUCTION

A target with high velocity may be intercepted difficultly. Additionally,
if the target has a low flight altitude, it will be difficult to be found
from the environment. In order to implement target detection and
tracking, the analysis of electromagnetic (EM) scattering from target
and environment composite model becomes important. Actually, the
method of moments (MoM) solutions of surface integral equations
(SIEs) are widely used for numerical analysis of EM radiation and
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scattering problems [1–9]. For these EM scattering problems of
composite model, the formulation is achieved by electric field integral
equation (EFIE) with no choice because of the presence of open
surfaces of environment. It is well known that the EFIE can be
used with MoM to treat problems of scattering by arbitrarily shaped
objects [10]. However, the EFIE is prone to internal resonance
problems and leads to ill-conditioned matrix equations that decrease
convergence rate of iterative solvers. The hybrid CFIE-EFIE [11, 12]
can be used to accelerate the convergence rate of iterations, but they
are usually problem-dependent. The hybrid methods combining MoM
with asymptotic techniques [13, 14] are efficient, but they have the
shortcoming of low accuracy.

In this paper, an efficient scheme is proposed to improve the
solutions of these scattering problems. In this scheme, the whole
computed domain is divided into a closed part and an open part,
which correspond to the target and environment parts. The closed
part is formulated by combined field integral equation (CFIE) [15],
and the open part is formulated by EFIE. According to the MoM
procedure [10], there will be two sub-matrix equations. The two sub-
matrix equations are solved one by one until the relative residual
error is less than a given value. Compared with conventional solution
with pure EFIE, the proposed scheme has better convergence and
lower memory requirement. Additionally, the multilevel fast multipole
algorithm (MLFMA) [15–23] is utilized to accelerate the computations
of matrix vector product. Numerical examples have demonstrated the
validity and efficiency of the proposed scheme.

2. FORMULATIONS

For composite model with target and environment, the conventional
EFIE solutions become inefficient due to the presence of open surfaces.
We improve solutions of these problems by taking a hint from the
improvement by the CFIE in the solution of scattering problems
involving only closed surfaces. The basic idea of the proposed scheme
is to divide the computed domain into closed and open parts, then
use different integral equations in different parts flexibly and solve
two sub-matrix equations. The proposed scheme is time-saving and
memory-saving compared with the conventional solutions.

In this paper, we consider the solution of the scattering problems
involving both closed and open conducting surfaces, which are
illuminated by plane wave. The EFIE and magnetic field integral
equation (MFIE) with respect to the induced current on the surface S
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can be written as

t̂·jk0η0

[∫

S
J(r′)g(r, r′)ds′ +

∇
k2

0

∫

S
∇ · J(r′)g(r, r′)ds′

]
= t̂·Ei(r), (1)

and

t̂ ·
[
1
2
J(r′)− n̂×∇×

∫

S
ds′g(r, r′)J(r′)

]
= t̂ · n̂×Hi(r) (2)

where t̂ is any unit tangent vector on surface; n̂ is the unit outward
normal vector of the conductor surface; k0 and η0 are the wavenumber
and wave impedance of free space; J is the surface current; r′ and
r denote the locations of source and observation point, respectively;
g(r, r′) = e−jk|r−r′|/4π |r− r′| is the Green’s function of free space; Ei

and Hi denote the incident electric field and magnetic field respectively.
To accelerate the convergence and reduce the memory require-

ment, an efficient scheme is proposed. Its basic principle may be de-
scribed using Figure 1, where the whole computed domain is divided
into target domain and environment domain. For simplicity, the whole
computed domain is defined as Ω, the target domain i defined as ΩT ,
the environment domain defined as ΩE , and Ω = ΩT + ΩE .

For the environment domain ΩE , we define two linear operators
TEE (r, J) and FEE (r, J) with respect to EFIE as

TEE (r,J) = t̂·jk0η0

[∫

ΩE

J(r′)g(r, r′)ds′+
∇
k2

0

∫

ΩE

∇·J(r′)g(r, r′)ds′
]

,

r′ ∈ ΩE , r ∈ ΩE , (3)

FEE (r,J) = t̂·jk0η0

[∫

ΩT

J(r′)g(r, r′)ds′+
∇
k2

0

∫

ΩT

∇·J(r′)g(r, r′)ds′
]
,

r′ ∈ ΩT , r ∈ ΩE , (4)

 

Target

Environment

Figure 1. The illustration of target and environment composite
model.
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then the iterative scheme of ΩE can be expressed as

TEE

(
r,J(k)

)
= −FEE

(
r,J(k−1)

)
+ t̂ ·Ei(r), r ∈ OE . (5)

According to the MoM procedure, the whole conductor surface S
is first discretized into triangles, and then the induced current J on
the surface S is expanded by using RWG basis functions. By applying
Galerkin’s testing, Equation (5) is converted into the following matrix
equation

ZEEI
(k)
E = VE − ZET I

(k−1)
T (6)

where the VE is the vector of the incident field in ΩE , I
(k)
E the vector

of the current coefficients in ΩE to be solved during the kth iteration,
and I

(k−1)
T the vector of the current coefficients in ΩT after being

solved at the (k− 1)th iteration. ZEE and ZET are the self-impedance
matrix in ΩE and the mutual-impedance matrix between ΩE and ΩT ,
respectively.

Similarly, for target domain ΩT , we define four linear operators,
where TTE(r, J) and FTE(r, J) are relevant to EFIE, while TTM (r, J)
and FTM (r, J) are relevant to MFIE. These operators are expressed
as

TTE(r,J) = t̂·jk0η0

[∫

ΩT

J(r′)g(r, r′)ds′+
∇
k2

0

∫

ΩT

∇·J(r′)g(r, r′)ds′
]
,

r′ ∈ ΩT , r ∈ ΩT , (7)

FTE(r,J) = t̂·jk0η0

[∫

ΩE

J(r′)g(r, r′)ds′+
∇
k2

0

∫

ΩE

∇·J(r′)g(r, r′)ds′
]
,

r′ ∈ ΩE , r ∈ ΩT ,(8)

TTM (r,J) = t̂·
[
1
2
J(r)−n̂×∇×

∫

ΩT

ds′g(r, r′)J(r′)
]

,

r′ ∈ ΩT , r ∈ ΩT , (9)

FTM (r,J) = t̂·
[
n̂×∇×

∫

ΩE

ds′g(r, r′)J(r′)
]

, r′∈ΩE , r∈ΩT . (10)

The iterative scheme of ΩT can be expressed as

αTTE

(
r,J(k)

)
+(1−α)η0TTM

(
r,J(k)

)
=α

[
−FTE

(
r,J(k−1)

)
+t̂·Ei(r)

]

+(1−α)η0

[
FTM

(
r,J(k−1)

)
+t̂·n̂×Hi(r)

]
, r∈ΩT . (11)

As Equation (5), Equation (11) can be converted into the following
matrix equation

ZTT I
(k)
T = VT − ZTEI

(k)
E , (12)
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where VT is a vector containing the information of the incident electric
field and magnetic field in the ΩT , I

(k)
T the vector of the current

coefficients in ΩT to be solved during the kth iteration, I
(k)
E the vector

of the current coefficients in ΩE after being solved at the kth iteration,
and both the self-impedance matrix ZTT and the mutual-impedance
matrix ZTE contain the information of electric field and magnetic field.

The sub-matrix Equations (6) and (12) can be solved one by one
until the relative residual error is less than a given value. In order
to increase efficiency of the proposed scheme, the MLFMA is used to
speed up the matrix vector product in Equations (6) and (12). The
basic idea of the MLFMA is to convert the interaction of element-to-
element to the interaction of cube-to-cube. We first select the smallest
cube in three dimensions containing the entire domain composed of
RWG basis function elements and partition it into eight subcubes.
Each subcube is then recursively subdivided into eight smaller cubes
until the edge length of the cube is about 0.25 wavelength, which is
controllable. As a result, all the basis function elements are assigned
in the cubes. The illustration of partition is shown in Figure 2.

Figure 2. The illustration of partition in MLFMA.

We expound the application of the MLFMA in Equation (6), and
Equation (12) is similar. In Equation (6), the matrix vector product
ZEEI

(k)
E for interactions inside ΩE is accelerated by the conventional

MLFMA, in which the direct interaction between two far-field elements
is separated into three steps containing aggregation, translation and
disaggregation. ZET I

(k−1)
T represents the interaction between ΩT and

ΩE , so the excitation source in the computed domain ΩE includes
both the information of plane wave and the coupling from ΩT . It is
different from the conventional MLFMA to accelerate the ZET I

(k−1)
T ,

where the aggregation arises in ΩT , the translation from ΩT to ΩE ,
and the disaggregation in the ΩE .
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3. NUMERICAL EXAMPLES

In this section, several numerical examples are presented to illustrate
the validity and efficiency of the proposed scheme. In these examples,
the relative residual errors of iteration solution of Equations (6)
and (12) are set as 0.0001. It should be noted that the MLFMA is
used in each simulation of these examples to accelerate the matrix
vector product computations. All the computations are performed on
a PC with Intel Dual-core 2.5GHz CPU and 4 GB RAM in double
precision.

The relative residual error at the kth iteration is used for
monitoring the convergence of the proposed method, which is defined
as

ε(V, k) =

∣∣∣∣V − ZI(k)
∣∣∣∣

2

||V ||2 (13)

where || · ||2 denotes the 2-norm of the complex vector. The iteration
stops when ε(V, k) is less than 0.0001.

As the first example, a composite model with coexisting closed
sphere and open square plate is considered to check the accuracy of
the proposed method. As shown in Figure 1, the radius of the sphere
is λ, the edge length of the plate 4λ, and the distance between the
sphere and the plate 5λ. The incident angles are Theta = 150◦ and
Phi = 180◦. Figure 3 shows that the bistatic RCS results at Phi = 0◦
and Phi = 90◦ computed by the proposed method agree well with the
results computed by using only the EFIE formulation.

The second example is a composite model composed of an
armature of electromagnetic launcher (EML) and a Gaussian rough
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Figure 3. Simulated bistatic RCS results of the first example.
(a) phi = 0◦, (b) phi = 90◦.
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surface environment with the following Gaussian spectrum.

W (kx, ky) =
lxlyh

2

4π
e−

l2xk2
x+l2yk2

y
4 (14)

Here, lx and ly are the correlation lengths in x-direction and y-
direction, respectively, and h is the root-mean-square height of the
rough surface. The specific size of armature is marked in Figure 4.
The size of the Gaussian rough surface is 4λ ∗ 4λ. The root-mean-
square height and correlation length of the rough surface are h = 0.05λ
and lx = ly = 1.2λ, respectively. The distance between the armature
and the rough surface is 5λ. The incident angles are Theta = 150◦ and
Phi = 180◦. Figure 5 shows the RCS results at Phi = 0◦ and Phi = 90◦
computed by the proposed method and the pure EFIE. It can be seen
that the results are in good agreement.

The third example is a composite model with lying cylinder and
square plate, which denote the target and environment parts. The
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Figure 4. The specific size of armature.
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Figure 5. Simulated bistatic RCS results of the second example.
(a) phi = 0◦, (b) phi = 90◦.
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Figure 6. Simulated bistatic RCS results of the third example.
(a) phi = 0◦, (b) phi = 90◦.
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Figure 7. Simulated bistatic RCS results of the fourth example.
(a) phi = 0◦, (b) phi = 90◦.

sizes of the cylinder and square plate are 3λ ∗ 2λ ∗ 2λ and 6λ ∗ 6λ. The
corresponding numbers of unknowns are 8439 and 12195, and their
distance is 6λ. The incident angles are Theta = 150◦ and Phi = 180◦.
Figure 6 shows the RCS results at Phi = 0◦ and Phi = 90◦.

The fourth example is a composite model with a larger lying
cylinder and a larger Gaussian rough surface. The sizes of the cylinder
and the rough surface are 6λ∗4λ∗4λ and 12λ∗12λ. The corresponding
numbers of unknowns are 34383 and 42960, and their distance is 10λ.
The root-mean-square height and correlation lengths of the rough
surface are h = 0.05λ and lx = ly = 1.0λ, respectively. The incident
angles are Theta = 150◦ and Phi = 180◦. Figure 7 shows the RCS
results at Phi = 0◦ and Phi = 90◦.

The computational costs of the four examples are shown in
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Table 1. Computational costs of the four examples.

Methods
Number of
unknowns

Memory
requirement

(MB)

Total
CPU
time

Example 1
EFIE-MLFMA 9217 73.7MB 237 s

Proposed Target Environment
32.3MB 71 s

method 3849 5368

Example 2
EFIE-MLFMA 5881 36.7MB 309 s

Proposed Target Environment
22.3MB 54 s

method 1161 4720

Example 3
EFIE-MLFMA 20634 81.6MB 1633 s

Proposed Target Environment
38.9MB 234 s

method 8439 12195

Example 4
EFIE-MLFMA 77343 632.6MB > 6 days

Proposed Target Environment
328.8MB 1259 s

method 34383 42960

Table 1. By applying the proposed scheme, the memory requirements
and total CPU time are dramatically reduced compared to the pure
EFIE. When the problems become larger, the effects are more obvious.

4. CONCLUSION

In this paper, a novel scheme is presented for the solution of the
composite problems with target and environment. Numerical examples
have demonstrated that the proposed scheme has improved the
solution efficiency and reduced the memory requirements significantly
compared to using only the EFIE formulation on the whole geometry.
As the problem size gets larger, the improved convergence provided by
the proposed scheme becomes critically important. The idea of using
different integral equations to treat the different parts can be extended
to the future research.
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