Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-16
A Spectral Volume Integral Method Using Geometrically Conforming Normal-Vector Fields
By
Progress In Electromagnetics Research, Vol. 142, 15-30, 2013
Abstract
Scattering characteristics of periodic dielectric gratings can be accurately and efficiently computed via a spectral volume integral equation combined with normal-vector fields defined on the grating geometry. We study the impact of the geometrical discretization on the convergence rate of the scattering characteristics for two-dimensional gratings in both TE and TM polarization and compare these with an independent semi-analytical reference for circular cylinders. We demonstrate that geometrically conforming normal vector fields lead to substantially faster convergence and shorter computation times, as opposed to the commonly applied staircasing or slicing.
Citation
Teis J. Coenen, and Martijn Constant van Beurden, "A Spectral Volume Integral Method Using Geometrically Conforming Normal-Vector Fields," Progress In Electromagnetics Research, Vol. 142, 15-30, 2013.
doi:10.2528/PIER13060706
References

1. Neviere, M. and Type: journal book conference other, "About the theory of optical grating coupler-waveguide systems," Optics Communications, Vol. 8, No. 2, 113-117, 1973.
doi:10.1016/0030-4018(73)90150-8

2. Moharam, , M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 71, No. 7, 811-818, 1981.
doi:10.1364/JOSA.71.000811

3. Botten, L. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Opt. Acta, , Vol. 28, 413-428, 1981.
doi:10.1080/713820571

4. Chandezon, , J., G. Raoult, and D. Maystre, "A new theoretical method for diffraction gratings and its numerical application," J. of Optics, Vol. 11, No. 4, 235-240, 1980.
doi:10.1088/0150-536X/11/4/005

5. Li, , L., , "Use of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A , Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870

6. Popov, , E., M. Neviµere, B. Gralak, and G. Tayeb, "Staircase approximation validity for arbitrary-shaped gratings," Journal of the Optical Society of America A, Vol. 19, No. 1, 33-42, 2002.
doi:10.1364/JOSAA.19.000033

7. Schuster, , T., J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, "Normal vector method for convergence improvement using the RCWA for crossed gratings ," Journal of the Optical Society of America A, Vol. 24, No. 9, 2880-2890, 2007.
doi:10.1364/JOSAA.24.002880

8. Rafler, , S., P. Gotz, M. Petschow, T. Schuster, K. Frenner, and W. Osten, "Investigation of methods to set up the normal vector field for the differential method," Proc. SPIEz, Vol. 6995, 9, 2008 .

9. Magath, T. and A. Serebryannikov, "Fast iterative, coupled integral-equation technique for inhomogeneous profiled and periodic slabs," Journal of the Optical Society of America A , Vol. 22, No. 11, 2405-2418, 2005.
doi:10.1364/JOSAA.22.002405

10. Magath, T., "Coupled integral equations for diffraction by pro¯led, anisotropic, periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 54, 681-686, 2006.
doi:10.1109/TAP.2005.861527

11. van Beurden, , M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Vol. 28, No. 11, 2269-2278, 2011.
doi:10.1364/JOSAA.28.002269

12. Shcherbakov, A. A. and A. V. Tishchenko, "New fast and memory-sparing method for rigorous electromagnetic analysis of 2D periodic dielectric structures," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 113, 158-171, 2012.
doi:10.1016/j.jqsrt.2011.09.019

13. van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetics Research B, Vol. 36, 133-149, 2012.
doi:10.2528/PIERB11100307

14. Popov, , E. and M. Neviere, "Grating theory: New equations Grating theory: New equations in Fourier space leading to fast converging results for TM polarization," Journal of the Optical Society of America A, Vol. 17, No. 10, 1773-1784, 2000.
doi:10.1364/JOSAA.17.001773

15. Sturmberg, , B. C. P., K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, "Modal analysis of enhanced absorption in silicon nanowire arrays," Optics Express, Vol. 19, No. S5, A1067-A1081, 2011.
doi:10.1364/OE.19.0A1067

16. Popov, , E., M. Neviµere, and , "Maxwell equations in Fourier space: Fast-converging formulation for dIffraction by arbitrary shaped, periodic, anisotropic media," Journal of the Optical Society of America A, Vol. 18, No. 11, 2886-2894, 2001.
doi:10.1364/JOSAA.18.002886

17. Elsherbeni, , A. Z. and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 1, 96-99, 1992.
doi:10.1109/8.123363

18. Abramowitz, , M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publishing, 1972.

19. Popov, , Gratings: Theory and Numeric Applications, Gratings: Theory and Numeric Applications, Institut Fresnel, CNRS, AMU, 2012.
doi:www.fresnel.fr/numerical-grating-book