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Abstract—Scattering characteristics of periodic dielectric gratings
can be accurately and efficiently computed via a spectral volume
integral equation combined with normal-vector fields defined on
the grating geometry. We study the impact of the geometrical
discretization on the convergence rate of the scattering characteristics
for two-dimensional gratings in both TE and TM polarization and
compare these with an independent semi-analytical reference for
circular cylinders. We demonstrate that geometrically conforming
normal vector fields lead to substantially faster convergence and shorter
computation times, as opposed to the commonly applied staircasing or
slicing.

1. INTRODUCTION

The analysis of electromagnetic scattering by periodic media has
received considerable attention for over a century. The study
of periodic structures offers the potential to efficiently model the
behavior of large repetitive systems that are nowadays encountered
in many applications, e.g., semiconductor production, grating couplers,
frequency-selective surfaces or phased-array antennas. For a numerical
method that incorporates periodicity, it comes natural to use
expansions based on Fourier series along the periodic direction(s).
Around 1980 the field of grating analysis witnessed a number of new
rigorous numerical methods emerging, such as the differential method
(DM) [1], the rigorous coupled-wave analysis (RCWA) or Fourier
modal method [2, 3], and the C-method [4], which are still widely used
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today. The latter two methods address the aperiodic dependence of
the solution by either assuming a piecewise constant permittivity, the
staircase approximation (RCWA), or by a coordinate transformation
of the permittivity profile for each material layer (C-method). The
first method (DM) does not remove the aperiodic dependence, but
includes the permittivity profile function in its formulation to setup
a boundary-value problem that can be solved using a numerical
integration technique. The introduction of the Fourier factorization
rules [5] greatly improved the convergence, efficiency and accuracy
of DM and RCWA, while also the S-matrix method (DM) and
the enhanced transmittance approach (RCWA) [2] improved the
performance. In the case of DM, the implementation of the Fourier
factorization rules [6] was obtained through the introduction of a
normal-vector field inside the unit cells, such that the appropriate
factorization rules could be applied to the normal and tangential field
components separately. This same technique was then applied to the
footprint of 2D-periodic gratings in RCWA [7] and made the staircase
approximation in the periodic directions superfluous. Nevertheless, the
staircase approximation in the aperiodic direction, which is inherent to
RCWA, can still introduce scattering that is not present in the smooth
structure that is approximated [6]. A perturbative technique based on
tilted normal-vector fields has been proposed [8] that can mitigate the
scattering from the staircase edges. Although the normal-vector field
is not strictly geometrically conformal, it induces a faster convergence.

A comparison of DM, RCWA, and the C-method shows that each
method is more efficient for particular grating geometries, such as
steep or binary gratings (RCWA), smooth and shallow gratings (DM)
or smooth gratings without inclusions (C-method). Moreover, the
scaling of computation time and memory requirement with the number
of unknowns, which is especially relevant for 2D-periodic gratings,
is poor for eigenvalue and boundary-value problems. Therefore, the
use of a formulation based on a volume integral equation (VIE)
has recently gained interest. Although this formulation in terms of
volume will typically lead to a large linear system, it can often be
solved efficiently when it is appropriately formulated [9–13]. The
combination of VIEs and the introduction of normal-vector fields in
the periodic directions results in a similar convergence as compared
to RCWA [13] for binary gratings. Contrary to RCWA, the VIE
formulation allows for geometrically conforming normal-vector fields
with components in both the periodic and the aperiodic direction and
provides the opportunity to also remove the staircase approximation
in the aperiodic direction. In this work, we introduce geometrically
conforming normal-vector fields with components in the aperiodic
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direction in a VIE formulation. For testing, a numerical algorithm
has been implemented within the framework of the VIE formulation
described in [11, 13]. To study the effects of geometrically conforming
normal-vector fields, we consider a case of 1D-periodic cylindrical rods,
as it is considered one of the most difficult cases to compute [14]
and an independent reference solution is available. However, the
algorithm can handle gratings with arbitrary height profiles, similar
to [8, 14]. The 1D-periodic case enables us to study the behavior
of the algorithm for a very large number of unknowns per direction
with acceptable computation time and memory demand. We compare
our results with an independent semi-analytical reference solution and
demonstrate that geometrically conforming normal-vector fields lead
to substantially faster convergence and shorter computation times,
as opposed to the staircase-based approach. An example of a recent
application for which a periodic array of cylindrical rods can be used
is the absorption modeling of arrays of nanowires in photovoltaic
applications [15].

2. METHOD OF ANALYSIS

For the numerical tests we consider a low-contrast and a high-contrast
case. The configuration depicted in Fig. 1 is used for either case and
only the permittivity of the cylinder with respect to the background
differs: in the low-contrast case εr = 2.32 and in the high-contrast
case εr = 18.4 − j0.403, which corresponds to silicon at a wavelength
λ0 = 500 nm. Note that we assume exp (jωt) time dependence.
The structure is periodic along the x-direction with a period of one
wavelength and is invariant along the y-direction. A plane wave,
with either TE or TM polarization, is incident on the structure with
arbitrary angle θi = 13◦ with respect to the z-axis. In this situation
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Figure 1. Two unit cells of the 1D-periodic array of infinitely-
extended cylinders considered for the numerical results. λ0 is the
wavelength in the background medium.



18 Coenen and van Beurden

two diffracted components can be distinguished in the reflection: the
specular component (zeroth order) and the first order component.

2.1. Reference Solution

For comparison of our results, we have implemented a semi-analytic
reference solution. This approach is based on Helmholtz’s equation in
cylindrical coordinates, for which the solution is expressed in terms
of Bessel and Hankel functions in the radial direction and a Fourier
expansion in the angular direction. With the use of Graf’s addition
theorem, the field expansion for a cylinder can be expressed in the local
cylindrical coordinates of another cylinder, as is described in more
detail in e.g., [17]. In this way, the coupling between the cylinders
can be accounted for and an infinite array formulation can be derived.
The resulting expression is a double infinite series, with summations
over the cylinder index and the cylindrical expansion index. For
numerical evaluation the series are truncated. While truncation for
the radial expansion index exhibits rapid convergence (relative error
below 10−11 for a truncation order of 9), the convergence is poor with
respect to the number of considered cylinders. Therefore, Aitken’s δ2

process [18, p. 18] is employed to accelerate this convergence. The plot
in Fig. 2 shows that the decay in the error is improved considerably
by the series acceleration method. In the calculation of the high and
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Figure 2. Relative error in the diffraction efficiency as a function
of the number of cylinders considered in the truncated sum over the
cylinder index in the reference solution. Comparison of the results
with and without series convergence acceleration. The reference was
calculated by considering 2 · 105 cylinders, truncation order 9 for
the number of cylindrical expansion terms and by using convergence
acceleration.
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low contrast reference solutions we consider 3 · 104 cylinders and a
truncation order 9 for the cylindrical expansions such that the relative
error of the calculated reference values is less than 10−9.

2.2. Spectral Volume Integral Equation

Below we briefly outline the key ingredients of the spectral VIE
formulation for the TE and TM case. For a full description of the
employed VIE formulation we refer to [11, 13]. For the TE case, the
corresponding matrix equation is given by

(
I + GTEχ

)
Ey = Ei

y, (1)

where I is the identity matrix, GTE is a block-diagonal matrix that
represents the Green’s function for the TE case, and χ is a block
Toeplitz matrix that represents the contrast function in the spectral
domain. For the TM case, the matrix equation is given by

(
Cε + GTM [εCε − Cε]

)
F = Ei, (2)

where Cε and εCε are block Toeplitz matrices that represent field-
material interactions with respect to the contrast, and GTM is a block-
diagonal matrix that represents the Green’s function for the TM case.
The field F is a mix between the electric field E = (Ex, Ez) and the
normalized electric flux density D̂ = (D̂x, D̂z), normalized with respect
to the permittivity of the background, such that [16]

E = CεF, (3a)

D̂ = εCεF, (3b)

which means that only a single matrix-vector multiplication is needed
to obtain E or D̂ once F is available. The field-material operators
Cε and εCε contain a so-called normal-vector field that describes the
local normal vector on an interface between two dielectric media. In
particular, the normal-vector field combines the normal component
of D̂ and the tangential component of E to form the vector F. We
note that, following the notation of [16], Cε and εCε represent each a
different operator, i.e., εCε is not constructed from Cε.

Owing to the structure of the separate matrices in the above
equations, an efficient O(NzM log M) matrix-vector product is
obtained, where Nz is the total number of unknowns, i.e., samples,
in the aperiodic direction (z) and M is the total number of unknowns,
i.e., Fourier modes, in the periodic direction (x). The memory
storage requirement is O(NzM). Therefore the above matrix equations
are solved iteratively using the stabilized-biconjugate-gradient (Bi-
CGSTAB(2)) method.
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2.3. Geometrical Approximation: Slicing Versus Conformal

In the traditional approach for normal-vector fields with components in
the periodic direction only, the cylinder is approximated by a stack of
piecewise binary slices. As depicted in Fig. 3(a), the cylinder is divided
into sectors with equal arc length to ensure adequate discretization of
the cylinder’s curvature. The original volume is retained for each slice.
In the VIE formulation each slice is discretized in the z-direction. The
number of samples per slice Nz,slice is based on the thickness ratio
compared to the thinnest slice for which Nz,slice = 2. This results in
an approximately uniform sampling along the z-axis. We will refer
to this traditional approach as slicing. Alternatively, a geometry-
conformal approach can be adopted in which the entire geometry is
sampled in the aperiodic direction without the intermediate slicing of
the geometry. The impact for the TE case is negligible, since only
the Fourier transform of the contrast function at each sample point
is needed for the matrix χ in Eq. (1). However, for the TM case, the
matrices Cε and εCε in Eq. (2) with and without slicing are completely
different due to the presence of the normal-vector field. Both matrices
can be partitioned as

C =
(

Cxx Cxz

Czx Czz

)
, (4)

where each of the sub-matrices is a Toeplitz matrix per sample point
along z. In the case of slicing, the normal-vector field is purely
x directed, which leads to Cxz = Czx = 0, i.e., the zero matrix,
and Cε,zz equals the identity matrix. Hence this case requires only
FFTs for the convolutions in [εCε − Cε]xx, [εCε − Cε]zz and Cε,xx,
which amounts to 2 forward and 3 backward FFTs and 3 diagonal
matrix multiplications per sample point in case of slicing. For the
TM case without the intermediate slicing, all four submatrices of Cε

and [εCε − Cε] are full Toeplitz matrices per sample point and no
simplification takes place. As a consequence, a total of 2 forward and
4 backward FFTs and 8 diagonal matrix multiplications per sample
point are required for the field-material interactions. Additionally,
a geometrically conformal normal-vector field must be determined.
For the TM case, this comparison shows that the slicing approach
is both very flexible and computationally more efficient than the
geometrically conformal approach for the same number of unknowns,
especially since the FFTs constitute the main computational burden.
Consequently, the geometrically conformal approach will outperform
the slicing approach when a predefined accuracy level is obtained with
fewer unknowns as compared to the number of unknowns required for
the same accuracy with the slicing approach.
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Figure 3. Applied slicing strategy using a staircase approximation
and the two utilized types of normal-vector fields NVA and NVB. At
the boundaries the normal vector points outward and the direction
flips at the dashed line. (a) Slicing. (b) NVA. (c) NVB.

Since normal-vector fields are not uniquely defined, an adequate
implementation has to be chosen for our geometry. For a cylinder
with the restriction of outward-pointing normal vectors, the simplest
implementation is a vector field with a tilt angle that is dependent on
z only. The tilt is chosen such that the field is normal to the cylinder
boundary at each z-coordinate and that its x-component changes sign
at the dashed line as depicted in Fig. 3(b). We note that there is
a kink in the field lines, due to the non-zero z-components at the
dashed line. In the following we will refer to this normal-vector field
as implementation NVA.

An alternative, that exhibits smoother convergence, is based on
a normal-vector field with circular field lines, as depicted in Fig. 3(c).
The circles are orthogonal to the cylinder boundaries and the dashed
line in the plot. The x-component of the normal-vector field changes
sign at the dashed line where also its z-component vanishes. We
will refer to this implementation as NVB. Because of the smoother
convergence, implementation NVB is preferred over NVA and we will
we use NVB for our calculations, unless explicitly specified otherwise.

3. NUMERICAL RESULTS

We investigate the convergence behavior as a function of the
discretization in the periodic and aperiodic directions and the
computation time.

3.1. Convergence in the Periodic Direction

First, we relate our approach to DM, based on the results presented
in [14, Fig. 8], by comparing the convergence of the error in the case of
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TM polarization with respect to the truncation order M , which is the
upper index of the Fourier modes and corresponds to a total of 2M +1
Fourier modes in the periodic direction. The analyzed geometry is a
dielectric cylindrical rod grating with a period of 1.58λ0 and cylinders
with 0.79λ0 diameter and εr = 6.25. The results in [14] have been
obtained using in total 400 integration points in the aperiodic direction.
A TM polarized plane wave with angle θi = 30◦ with respect to
the z-axis is incident on the grating. We have generated a reference
solution with 3·104 cylinders and truncation order 17 for the cylindrical
expansions. In Fig. 4 the results from [14] have been plotted, as well as
the results that have been obtained with the volume integral method.
The error plotted in Fig. 4 follows the definition in [14]. We observe
that the convergence trends for both methods are similar for the case
with slicing. If we compare the approaches based on geometrically
conforming normal-vector fields, we observe that the convergence of
NVA exhibits an oscillatory effect, but overall it converges at a similar
rate as DM. NVB also converges at the same rate, but the error is
a factor 10 to 100 lower at equal truncation orders. Below 10−6 the
convergence rate of NVA and NVB with Nz = 400 reduces. This effect
also appears to be present in the results for DM and is caused by the
discretization in the aperiodic direction: the convergence of the error
for NVB with Nz = 5960 is not hampered by this effect.

For our further study of the convergence in the periodic direction,
we go back to the scattering setup described at the beginning
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Figure 4. Error in TM polarization as a function of the truncation
order for the cylindrical rod grating presented in [14, Fig. 8]. The
definition of the error is according to [14]. Comparison of the volume
integral method (gray) with DM (black). Comparison for NVA and
NVB types of normal-vector fields. For the cases without slicing
Nz = 400 or Nz = 5960 and in the case of slicing Ns = 100 with
4 unknowns per slice.
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of Section 2 and we choose a fixed and very fine discretization in
the z-direction with Nz = 5960 sample points. In the case of
slicing, the sample points are distributed (approximately) uniformly
over 120 binary slices and in the geometrically exact implementations
the samples are distributed uniformly.
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Figure 5. Diffraction efficiency of the reflected orders as a function of
the truncated number of Fourier modes for a high-contrast grating with
Nz = 5960. Comparison of slicing and two different normal-vector field
implementations (NVA and NVB) with a reference solution. (a) TE
polarization; specular component. (b) TM polarization; first order
component.

First we consider the diffraction efficiency (DE) [19, Ch. 2] of
the reflected components as a function of the truncation order M . In
Fig. 5(a) the diffraction efficiencies for the specular reflection in TE
polarization are depicted for the high-contrast cylinders. The dashed
gray line indicates the diffraction efficiency that has been calculated
using the semi-analytical reference method. The curve representing
the method without slicing converges to the reference solution. The
results obtained with slicing converge to a slightly different diffraction
efficiency. Since the slicing, and therefore the geometry, is fixed, the
difference is due to the geometrical discrepancy between the sliced and
the sampled smooth structure, since TE polarization does not require
normal-vector fields. A finer slicing is required to obtain more accurate
values.

Figure 5(b) depicts the diffraction efficiency for the first order
reflection in TM polarization. For this polarization, normal-vector
fields are used to distinguish between normal and tangential field
components and depending on the normal-vector field choice we
observe different results. For NVA the convergence shows an oscillatory
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convergence behavior, whereas for NVB the convergence is smoother.
Furthermore, it is evident that the convergence with slicing is
considerably slower than the normal-vector based methods.

Additionally, we investigate the behavior of the relative error with
respect to the reference solution of the total diffraction efficiency, i.e.,
DEr0 + DEr1,” for the two reflected orders, defined by

|(DEr0 + DEr1)− (DEref
r0 + DEref

r1 )|
(DEref

r0 + DEref
r1 )

. (5)

Note that this error definition is not squared as in [14] and Fig. 4.
In Fig. 6 this relative error has been plotted for the two considered
contrasts and polarizations for both the normal-vector methods and
the slicing method.

        
        
         

          

          
           

              
               

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

 4  51 10

truncation order

re
la

ti
v

e 
er

ro
r

high-c; no slicing
low-c; no slicing

low-c; slicing
high-c; no slicing

high-c; no slicing
low-c; no slicing

low-c; slicing
high-c; no slicing

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

re
la

ti
v

e 
er

ro
r

 4  51 10

truncation order

(a) (b)

Figure 6. Relative error in the total reflection diffraction efficiency of
the reflected orders as a function of the truncated number of Fourier
modes for a low-contrast (gray) and a high-contrast (black) grating
with Nz = 5960. Solid lines: no slicing and NVB; dashed lines: slicing
based on 120 slices). (a) TE polarization. (b) TM polarization.

For incident waves with TE polarization, see Fig. 6(a), we observe
that the difference between the high- and low-contrast cases manifests
itself in a scaling factor in the relative error. Comparing the methods
with and without slicing, we see that for low truncation orders the
curves coincide. When more Fourier modes are considered, the
convergence rate appears to decrease and it seems that the relative
error is bounded by a minimum value, which is smaller when no slicing
is applied. In the case of slicing, the geometrical discrepancy limits
the accuracy, while in the other case the number of samples in the
z-direction limits the accuracy. To further improve the accuracy, the
number of aperiodic unknowns needs to be increased further.
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The relative error in the case of TM polarization as shown in
Fig. 6(b) exhibits a different behavior, due to the normal-vector field.
While the high- and low-contrast cases for slicing seem to differ again
by a scaling factor, the error trends for NVB and slicing converge
at different rates, where the former converges much faster. The
poor convergence for the slicing method for TM polarization is due
to the staircase approximation, which introduces strong near fields
at the square slice edges [6]. Since the normal-vector field method
accounts for the slope of the object boundaries, the unwanted near-
field fluctuations are not introduced and therefore it does not suffer
from such considerable convergence deterioration for TM polarization.

3.2. Convergence in the Aperiodic Direction

The convergence for unknowns in the z-direction is treated in a similar
way as in the periodic direction, by fixing the truncation order and
varying the number of slices or the number of sample points directly
(geometrically conforming normal-vector case). The relative defined
in (5) has been plotted in Fig. 7 for the same situations as in Fig. 6,
using a total of 103 Fourier modes.
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Figure 7. Relative error in the total reflection diffraction efficiency of
the reflected orders as a function of the unknowns in the z-direction
Nz for a low-contrast (gray) and a high-contrast (black) grating with
M = 51. Solid lines: no slicing and NVB; dashed lines: slicing. (a) TE
polarization. (b) TM polarization.

For the case of TE polarization, depicted in Fig. 7(a), the low- and
high-contrast cases differ again in relative error by a scaling factor. The
convergence tends to constant rates, contrary to the convergence with
respect to Fourier truncation where the error appeared to be bounded.
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Due to the staircase approximation, the convergence rate with slicing
is worse than when the geometry is not approximated.

The convergence trends for the aperiodic unknowns in the case of
TM polarized waves, plotted in Fig. 7(b), are roughly comparable to
those in Fig. 6(b) for Fourier truncation order dependence. In the TM
polarized cases NVB improves the convergence order of the relative
error considerably.

3.3. Trends for Computation Time

Apart from the convergence with respect to the number of unknowns,
for many applications it is also relevant to study the relation between
accuracy and computation time. For this, both the truncation
order and the number of unknowns in the z-direction are varied
simultaneously and the relative errors in the diffraction efficiencies
of the reflected orders have been calculated for all combinations of
unknowns as given in Table 1. All computations have been performed
on a HP EliteBook 8530w with an Intel Core2 Duo T9600 2.80GHz
CPU and 3GB of accessible memory. To facilitate the comparison
of the results for different grating contrast and polarization, the
computation times have been normalized to the maximum computation
times per plot, which are specified in the captions of Fig. 8 and Fig. 9.

In Fig. 8 the relative error for TM polarization has been plotted
as a function of the computation time for each variation. On a double
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Figure 9. Least-squares fit of the relative error in the total diffraction
efficiency of the reflected orders as a function of the normalized
computation time. Based on simultaneous variation of truncation order
and unknowns in the z-direction for a low-contrast (gray) and a high-
contrast (black) grating. Solid lines: no slicing and NVB; dashed lines:
slicing. The normalization unit corresponds to 12.0 s, 82.3 s, 16.6 s, and
718 s for TE low- and high-contrast and TM low- and high-contrast,
respectively. (a) TE polarization. (b) TM polarization.

logarithmic scale we discern that the data points are approximately
scattered around a straight line. By performing a least-squares fit
to the scattered data, we obtain the trend lines in Fig. 8. We note
that the best performance is achieved at the lower envelope of the
scattered data, however a priori determination of the optimal number
of unknowns in all directions simultaneously is intractable. Therefore,
the linear trends are more indicative of the convergence rates of the
relative errors as a function of computation time. The fitted linear
trends have been plotted for the case of TE and TM polarization in
Fig. 9(a) and Fig. 9(b), respectively. Note that the trends of Fig. 8 are
represented by the gray lines in Fig. 9(b). For TE incidence we observe
that the trends for the low- and high-contrast gratings differ by an
offset in the relative error. Furthermore, the computation time for low
accuracy is lower in the case of slicing. However, since the trends for
the cases without slicing decrease at a higher rate, the latter approach
is preferable for higher accuracies (< 10−3 for the low contrast and
< 10−2 for the high contrast).

In the case of TM polarization, an offset in the relative error is also
present between the high- and low-contrast cases. The decay rate for
NVB is approximately equal to the rate for TE polarization. However,
the slicing method clearly exhibits a much lower convergence rate. The
normal-vector field method is faster than slicing for all accuracies.
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Table 1. Settings for the number of unknowns that have been used
for the presented computations. The discretezation is approximately
equidistant on a logarithmic scale.

Method Fourier trunc. order (M) Aperiodic unknowns (Nz)

slicing
{1, 2, 3, 4, 5, 6, 8, 11, 14, 18,

23, 30, 39, 51}
{2, 4, 7, 10, 22, 27, 52, 81, 136,

238, 421, 719, 1236, 2174}
no

slicing

{1, 2, 3, 4, 5, 6, 8, 11, 14, 18,

23, 30, 39, 51}
{2, 3, 4, 6, 10, 16, 26, 41, 65, 103,

164, 261, 415, 660, 1049}

4. CONCLUSION

We have introduced geometrically conforming normal vectors within
a volume integral equation formulation for 1D-periodic gratings, to
improve the computational performance and such that the method can
be applied to gratings with arbitrary height profiles. For cylindrical
gratings of low and high dielectric contrast, we have investigated the
performance of this approach and we have compared the accuracy to
an independent reference solution.

Studying the convergence of the diffraction efficiencies with
respect to the number of Fourier modes, we have observed that the
accuracy of the traditional staircase approximation is limited by the
geometrical discrepancy between the approximated cylinder and the
true cylinder.

For TM polarization we have also observed that the convergence
rate of the geometrically conforming normal-vector approach is higher
for both high- and low-contrast gratings, which is consistent with
improvements obtained for the differential method. We have observed
similar trends for the convergence with respect to the aperiodic
discretization. Moreover, the convergence rate with respect to the
aperiodic discretization is also slightly higher for TE polarization when
slicing is not applied.

We have observed that only for low accuracies and TE polarization
the slicing method is faster than the geometrically exact approach. For
all other cases the convergence rate with respect to computation time is
higher for the geometrically conforming normal-vector approach than
for the approach based on slicing.
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