1. Omar, M., S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic imaging with transmission line pulsers," Med. Phys., Vol. 39, No. 7, 4460-4466, 2012.
2. Ku, G., B. D. Fomage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, No. 5, 1-7, 2005.
3. Kruger, R. A., P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) --- Reconstruction tomography," Med. Phys., Vol. 22, No. 10, 1605-1609, 1995.
4. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
5. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermo-acoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 839-842, 2005.
6. Xu, M. and L. V. Wang, "Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration," Med. Phys., Vol. 29, No. 8, 1661-1669, 2002.
7. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2741-2752, 2008.
8. Lazebnik, M., D. Popovic, L. M. Cartney, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093-6115, 2007.
9. Cox, B. T. and B. E. Treeby, "Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media," IEEE Trans. Med. Imag., Vol. 29, No. 2, 387-396, 2010.
10. Li, S., M. Jackowski, D. Dione, L. Staib, and K. Mueller, "Refraction corrected transmission ultrasound computed tomography for application in breast imaging," Med. Phys., Vol. 37, No. 5, 2233-2246, 2010.
11. Li, S., K. Mueller, M. Jackowski, D. Dione, and L. Staib, "Fast marching method to correct for refraction in ultrasound computed tomography," IEEE International Symposium in Biomedical Imaging (ISBI), 896-899, 2006.
12. Wang, J. G., Z. Q. Zhao, J. Song, X. Zhu, Z. P. Nie, and Q. H. Liu, "Reconstruction of microwave absorption properties in heterogeneous tissue for microwave-induced thermo-acoustic tomography," Progress In Electromagnetics Research, Vol. 130, 225-240, 2012.
13. Li, C., L. Huang, N. Duric, H. Zhang, and C. Rowe, "An improved automatic time-of-flight picker for medical ultrasound tomography," Ultrasonics, Vol. 49, No. 1, 61-72, 2009.
14. Molyneux, J. B. and D. R. Schmitt, "First-break timing: Arrival onset times by direct correlation," Geophysics, Vol. 64, No. 5, 1492-1501, 1999.
15. Boschetti, F., D. Dentith, and R. D. List, "A fractal-based algorithm for detecting first-arrivals on seismic traces," Geophysics, Vol. 61, No. 4, 1095-1102, 1996.
16. Sleeman, R. and T. Eck, "Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram recordings," Phys. Earth Planet Interiors, Vol. 113, No. 1-4, 265-272, 1999.
17. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seism. Soc. Am., Vol. 93, No. 5, 1904-1912, 2003.
18. Fink, M. and C. Prada, "Acoustic time reversal mirror," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
19. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
20. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
21. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
22. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Trans. Ultrasonic, Ferroelectrics, Frequency Control, Vol. 50, No. 9, 1134-1146, 2003.
23. Mast, T. D., "Empirical relationship between acoustic parameters in human soft tissue," Acoust. Res. Lett., Vol. 1, No. 2, 37-42, 2000.
24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
25. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN," IEEE Trans. Microw. Theory Tech., Vol. 46, 2074-2082, 1998.
26. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, No. 4, 1044-1055, 1998.
27. Mashal, A., J. H. Booske, and S. C. Hagness, "Towards contrastenhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets," Phys. Med. Biol., Vol. 54, No. 3, 641-650, 2009.
28. Zastrow, E., S. K. Davis, and S. C. Hagness, "Safety assessment of breast cancer detection via ultrawideband microwave radar operating in pulsed-radiation mode," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 221-225, 2007.
29. Capozzoli, A., C. Curcio, and A. Liseno, "GPU-based ω-K tomographic processing by 1D non-uniform FFTs," Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012.