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Abstract—Time-of-flight (TOF) has been used to estimate sound
velocity (SV) distribution of heterogeneous tissue to relieve the
effect of acoustic heterogeneity in microwave-induced thermo-acoustic
tomography (MITAT). Accurately picking the TOFs is significantly
important to ensure high accuracy SV images, which greatly help
to reconstruct the microwave absorption distribution accurately.
However, current methods for picking the TOFs are designed for
single source case. For breast tumor detection in MITAT, these
methods become ineffective or even fail at the situation where
multiple tumors are embedded in a normal breast tissue. In order
to accurately reconstruct the microwave absorption properties of
tumors in heterogeneous tissue in MITAT, an efficient method for
picking tumors’ TOFs is proposed. Combining the advantages of
the wavelet transform and Akaike information criterion (AIC), the
proposed method introduces a concept of separate extraction of TOFs.
It can efficiently and accurately pick the TOFs of different tumors
from the measured data in MITAT. Using the TOFs picked by the
proposed method can efficiently help to reduce the effect of acoustic
heterogeneity and greatly improve the accuracy and the image contrast
of reconstructed microwave absorption properties. Some numerical
simulations are given to demonstrate the effectiveness and feasibility
of the proposed method in this paper.
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1. INTRODUCTION

Microwave-induced thermo-acoustic tomography (MITAT) has re-
cently received much interest because of its great potential in detecting
and diagnosing early-stage breast cancer [1–7]. In a MITAT system,
the biological tissue is irradiated by a short electromagnetic pulse and
then absorbs the microwave energy. Due to the dielectric differences
among different biological tissues, microwave illumination will result
in uneven heating for the tissues. Owing to the thermo-acoustic ef-
fect, the uneven heating gives rise to thermo-elastic expansion which
radiates acoustic waves [1–7]. Because the microwave energy absorbed
by tumor is much more than that by healthy adipose-dominated tis-
sues [8], the tumor can be regarded as a thermo-acoustic source for
breast cancer detection in MITAT. An image of the original acoustic
pressure distribution, which reflects the microwave absorption prop-
erties of tissues, is reconstructed to detect tumor from the received
acoustic waves [7]. Compared with microwave imaging and ultrasound
imaging, MITAT exploits dielectric contrast at microwave frequencies
while creates images with ultrasound resolution [8]. Therefore, MITAT
combines the advantages of both microwave imaging and ultrasound
imaging.

In MITAT, dense breast tissue often has unknown spatial
variation in acoustic properties which must be taken into account in
imaging [7, 9]. However, most current imaging methods neglect the
effect of acoustic heterogeneity and assume the acoustic properties of
tissue as homogeneous [9]. Due to the effect of acoustic heterogeneity of
dense breast tissue, the reconstructed image of microwave absorption
distribution will be blurred with the assumption of a homogeneous
sound velocity (SV) distribution. In order to relieve the effect
of acoustic heterogeneity, SV distribution must be estimated and
utilized in the image reconstruction of original microwave absorption
distribution [10–12]. In obtaining the SV distribution, time-of-flight
(TOF) is a critical parameter. TOF is the time for the wave
propagating through the medium from the thermo-acoustic source to
the receiver. According to tumors’ TOFs picked from the received data,
the SV distribution can be iteratively updated by using an iterative
reconstruction method [12] in MITAT. For this reason, accurately
picking tumors’ TOFs from the received ultrasonic signals is critical
to ensure high accuracy SV distribution and therefore to accurately
reconstruct the microwave absorption properties of tumors.

Various methods for picking the TOFs have been presented in
literatures [13–17]. Among these methods, the W-AIC picker [17] has
been widely used in many applications due to its robust performance.
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However, not only the W-AIC method but also other current methods
for picking the TOFs are designed for single source case. In MITAT,
when two or more tumors exist in the biological tissue, they will
produce ultrasonic signals simultaneously. For this situation, current
methods can not accurately pick the TOFs for multiple tumors.
Thus, the SV distribution of the biological tissues will be improperly
estimated.

In order to solve the aforementioned problem, a new method
for picking tumors’ TOFs is developed in this paper. The proposed
method introduces an idea of separate extraction to pick tumors’ TOFs
based on the W-AIC picker. The idea of separate extraction is that
the ultrasonic signals induced by different tumors are firstly truncated
from the received data by using different time windows. Then
tumors’ TOFs are picked separately by using W-AIC picker from the
truncated signals. To summarize, the proposed method decomposes
a multiple sources problem into several single source problems. With
the TOFs picked by the proposed method, the image of microwave
absorption properties of tumors is reconstructed by using an iterative
reconstruction method [12]. Some simulation results demonstrate the
effectiveness of the proposed method.

The remainder of the paper is organized as follows. In Section 2,
a brief review on the iterative reconstruction method and the W-AIC
picker is given. Then the proposed method is given and analyzed in
Section 3. Some numerical results are shown in Section 4 to validate
the proposed method. Conclusions are drawn in the last section.

2. A BRIEF REVIEW OF THE ITERATIVE
RECONSTRUCTION METHOD AND W-AIC METHOD

2.1. Iterative Reconstruction Method

Aiming to reduce the effect of acoustic heterogeneity, an iterative
reconstruction method (IRM) [12] has been proposed in MITAT.
IRM consists of time reversal mirror (TRM) [18–21], fast marching
method (FMM) and simultaneous algebraic reconstruction technique
(SART) [10, 11]. It can reconstruct the microwave absorption
properties of heterogeneous tissue using solely measured data with
very few acceptable assumptions. The excellent performance of this
algorithm has been demonstrated in [12]. The main idea of the IRM
is shown in Fig. 1.

From Fig. 1, it can be seen that ∆TOF is a prerequisite in IRM
because the initially assumed homogeneous SV is iteratively updated
according to ∆TOF. Among the ∆TOF, TOF cols which contain the
information of real SV distribution are obtained from the measured



60 Wang et al.

Initialize SV Update SV

TRM FMM

N Y
Image

Receivedsignals

Convergence

Source positions 

with current SV

Pick TOFs(TOFcols)

by W-AIC picker

Calculate TOFs(TOFsims)

with current SV

Calculate ∆TOF=

(TOFcols-TOFsims)

Figure 1. The block scheme of IRM.

data. Therefore picking tumors’ TOFs (TOF cols) from the measured
data is a critical step in IRM. In IRM, the W-AIC picker is used to pick
the TOF cols. However, when there are two or more tumors existing
in the breast tissue, the W-AIC picker can not accurately pick the
TOFs of multiple sources. This may result in microwave absorption
distribution of multiple sources reconstructed wrongly.

2.2. The W-AIC Picker

The W-AIC picker has been widely used in many applications due to
its excellent performance in picking the TOFs. It combines the AIC
picker with wavelet transform to improve the accuracy of picking the
TOFs [17].

For a given signal S, it can be decomposed into the wavelet
coefficients at several scales. The approximate wavelet coefficients are
usually used to analyze the signal because they indicate the residuals
of the signal after the high frequency components are removed [17].
Zhang et al. concluded that decomposing a signal into three scales is
appropriate [17]. For these reasons, we suppose that the approximate
wavelet coefficients of the signal S at three scales are S1, S2, and S3

respectively. Then the AIC values at the three scales are calculated by

AICp(k) = k · log{var(Sp[1, k])}+(N − k − 1)· log{var(Sp[k + 1, N ])},
p = 1, 2, 3, (1)

where N is the length of the time window and k the sample point
ranged from 1 to N . var(·) denotes variance.

The AIC picker selects the point with the minimum AIC value as
the candidate at each scale. If these three sample points are in close
proximity to each other, the sample point at scale 2 is chosen as the
TOF of the signal S. Hence, the W-AIC picker always chooses only
one point with minimum AIC value as the TOF point even if there are
multiple signals induced by different sources in the time window. This
is the reason why the W-AIC picker fails to handle the situation for
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picking tumors’ TOFs when multiple acoustic sources are contained in
a dense breast tissue in MITAT.

3. THE PROPOSED METHOD

To solve the problem described in Section 2 for picking tumors’ TOFs in
MITAT, a concept of separate extraction is introduced. The purpose
of the separate extraction is to make ultrasonic signals induced by
tumors exist in different time windows. Then the multiple sources
case is converted into several single source cases which the W-AIC
picker can solve.

[7] and [22] reported that the amplitude distortion caused by the
heterogeneity effects is not severe in breast tissue and the peak values of
the ultrasonic signals can be extracted with a high probability. Here we
employ the peak searching method proposed in [7] to search the peaks
of ultrasonic signals. Then the ultrasonic signals induced by multiple
tumors are truncated from the received data by using time windows
according to the corresponding time points of the searched positive
peaks. A schematic flowchart of the proposed method is shown in
Fig. 2.

Received data
Estimate positions 

(Pi) of sources

Calculate arrival time (Ti(m)) 

from Pi to mth transducer

TRM with 

assumed SV
Time window

Pick the TOF

of source i

Truncate signal 

induced by source i
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Figure 2. The flow chart of picking the TOFs of multiple tumors.

The process of the proposed method is summarized as:
1) Estimate the positions of tumors by using TRM with the

assumption of homogeneous SV distribution. Assume there are N
tumors in the tissue and note the estimated positions of tumors
as Pi, i = 1, . . . , N .

2) Calculate the arrival time tm(i) by using

tm(i) =
‖Pi − rm‖

v0
, i = 1, . . . , N, (2)

where rm is the location of the mth transducer. v0 is chosen to be
the mean SV of tissue. ‖A‖ denotes the Euclidean norm of A.



62 Wang et al.

3) Search the positive peaks of the ultrasonic signals by using the
following equation,

Peaki = max
{

max
t∈[−∆i,∆i]

{s̃m(t), 0}
}

, i = 1, . . . , N, (3)

where s̃m is the data received by the mth transducer. The
searching range is [−∆i, ∆i] which is around the arrival time tm(i).
Here ∆i is a user parameter.

4) Find the time points corresponding to the searched peaks of the
ultrasonic signals. Note the corresponding time points as TP i,
i = 1, . . . , N .

5) Choose the interesting segments by using time windows (Wi,
i = 1, . . . , N):

Wi = [TPi − ε ·D, TPi + ε ·D], ε = 0.5, (4)

where D is the shortest distance from TP i to TP j , j =
1, . . . , N, j 6= i.

6) Pick the TOFs using W-AIC picker from the truncated segments.

In steps 1) and 2), TRM technique is applied to estimate the
positions of the acoustic sources because TRM seems to be the leading
candidate as a generally applicable and robust imaging algorithm [18–
21]. In MITAT, the real SV distribution of the biological tissue is
unknown, but the spatially-averaged SV value of the tissue is usually
known [7, 9]. Therefore, the SV distribution of the breast tissue is
usually assumed as homogeneous [7, 9]. This is the reason why v0 in
(2) is chosen as the average SV value of tissue. So the positions of the
acoustic sources is approximately reconstructed based on the assumed
homogeneous SV distribution by using TRM. However, if two tumors
are most closely located, then they are not resolved and reconstructed
as one tumor. So according to our numerous simulations, when the
distance between tumors is less than 1 cm, the proposed method will
not resolve them.

Once the TOFs of multiple tumors are obtained, IRM is used to
reconstruct the microwave absorption distribution of tumors.

4. NUMERICAL SIMULATIONS

In this section, the performance of the proposed method is validated
through two examples: tumors embedded in fatty tissue and glandular
tissue. In the first example, only tumors are the acoustic sources which
radiate the ultrasonic signals. While in the second example, both
tumors and glandular tissue are the acoustic sources. Furthermore,
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in order to simulate realistic scenarios, Gaussian noise is added into
the received signals. In [13], 18 dB of signal to noise ratio (SNR) in
vivo breast data is regarded as low SNR. In the following examples,
lower SNR (10 dB) is considered to test the performance of proposed
method.

4.1. Tumors Embedded in Fatty Tissue (Example 1)

A 2-D breast model is shown in Fig. 3. The SV distributions of
tissue 1–4 and the fat are modeled as 2-D Gaussian distribution with
the standard deviation of 10 and the corresponding spatially-averaged
SV values are set according to [10–12] and listed in Table 1. The
breast tissue is put into the mineral oil which has permittivity similar
to that of the fatty tissue [7]. The density of tissue is selected as
ρ = 0.893 ∗ SV − 349, which is a relation derived from the measured
properties of soft tissue [23].

 

Figure 3. 2-D dense breast model.

Table 1. Sound velocities of different breast tissues.

Tissues Fatty Tissue 1 Tissue 2 Tissue 3 Tissue 4
Velocity (m/s) 1470 1580 1572 1560 1566

In [7, 24], the dielectric properties of fatty and tumor tissues are
listed in Table 2. In MITAT, the specific absorption rate (SAR)
distribution which is used as the acoustic pressure source is given
as [7, 25]:

SAR(r) =
σ(r)E2(r)

2ρ(r)
, (5)
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where σ(r) is the conductivity of the biological tissue at location r,
E(r) the electric field at location r, and ρ the density of the biological
tissue. Assume electric field E(r) is equal in the breast tissue, we
can conclude that the acoustic pressure intensity of tumor is about
10 times larger than that of fat tissues from (5). Hence, two 5-mm-
diameter tumors are assumed as the acoustic sources and the other
four tissues do not emit acoustic signals [12]. The ultrasonic signals
induced by two sources are simulated by using pseudo-spectral time-
domain (PSTD) method [26]. 256 transducers are uniformly located on
a circle surrounding the breast tissue to receive the data [10–12]. The
grid-cell size used by PSTD is 0.5mm×0.5mm and the computational
domain is divided into 256 × 256 grids in the simulations. To avoid
artificial reflections caused by the truncation of the computational
domain, perfectly matched layer (PML) absorbing boundary condition
is induced.

Table 2. Dielectric properties of fatty and tumor tissues.

Tissues
Dielectric properties

Permittivity (F/m) Conductivity (S/m)
Fatty tissue 9 0.4

Tumor 50 4

Figure 4(a) gives the TOFs picked by the proposed method and
the W-AIC method when SNR is 10 dB. The solid line with triangles
is the TOFs picked by the W-AIC method. The dashed lines with
squares and points are the TOFs of tumor 1 and tumor 2 picked by
the proposed method. Figs. 4(b) and (c) are the comparisons between
the TOFs picked by the proposed method and the corresponding
theoretical values. In Fig. 4(b), the solid line with squares is the TOFs
of tumor 1 picked by the proposed method and the dashed line is the
theoretical TOFs of tumor 1. In Fig. 4(c), the solid line with circles is
the TOFs of tumor 2 picked by the proposed method and the dashed
line is the theoretical TOFs of tumor 2. Fig. 4(d) plots the TOFs picked
by proposed method and W-AIC at one receiver. The red point is the
TOF picked by W-AIC and two green squares are the TOFs picked by
proposed method. According to the results, we can conclude that the
effect of the noise to the proposed method is small. This is because
that the proposed method is based on the robust W-AIC picker, which
has the ability for noise reduction. Therefore, the proposed method
works well at low SNR in MITAT.
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(a) (b)

(c) (d)

Figure 4. (a) TOFs picked by proposed method and W-AIC at
SNR = 10 dB; (b) TOFs of tumor 1 picked by proposed method
and corresponding theoretical TOFs; (c) TOFs of tumor 2 picked
by proposed method and corresponding theoretical TOFs. (d) TOFs
picked by proposed method and W-AIC at one receiver.

Figure 5(a) gives the microwave absorption distribution recon-
structed by using TRM under the assumed homogeneous SV distribu-
tion and Gaussian noise. Two tumors are blurred and have low image
contrast especially for tumor 2. Fig. 5(b) is the microwave absorption
distribution reconstructed by IRM with the TOFs picked by W-AIC
picker. Obviously in Fig. 5(b), only tumor 1 is recovered, while tu-
mor 2 is missed, though tumor 1 has good agreement with the actual
tumor size and location. According to the TOFs picked by the pro-
posed method, the final microwave absorption distribution is given in
Fig. 5(c). Both tumor targets are recovered and have much better spa-
tial resolution and image contrast than Figs. 5(a) and (b). Compared
with Fig. 5, noise has little effect to the final microwave absorption
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(a) (b)

(c)

Figure 5. (a) Microwave absorption reconstructed by TRM;
(b) Microwave absorption reconstructed by IRM with TOFs picked by
W-AIC; (c) Microwave absorption distribution reconstructed by IRM
with TOFs picked by proposed method.

reconstruction. Because the IRM involves the TRM engine, it also has
the ability of noise reduction [20–24]. Moreover, Figs. 5(a)–(c) are all
normalized.

In this example, the proposed method is validated when tumors
are embedded in the fatty tissue. Compared with the W-AIC picker,
the proposed method can efficiently and accurately pick the TOFs of
both tumors while the W-AIC only picks a part of tumors’ TOFs.

4.2. Tumors Embedded in Glandular Tissue (Example 2)

In this subsection, another example which considers the effect of
normal glandular tissue is presented. Fig. 6 gives the specific
configuration of 2-D breast model which refers to the dense breast



Progress In Electromagnetics Research M, Vol. 32, 2013 67

phantom in the UWCEM Numerical Breast Phantom Repository
(http://uwcem.ece.wisc.edu) [27, 28]. In this model, the shape of
normal glandular tissue is simplified as ellipse and the SV value of
glandular tissue is 1540m/s and other SV parameters are the same as
previous example.

Figure 6. 2-D breast model with two tumors embedded in normal
glandular tissue.

By referring to [8], the dielectric properties of different breast
tissues are listed in Table 3. According to (5), SAR of both tumors
and glandular tissue are much larger than that of fatty tissue. So, the
effect of fatty tissue can be neglected and both tumors and glandular
tissue are assumed as acoustic pressure sources in this simulations.

Table 3. Dielectric properties of different breast tissues.

Tissues
Dielectric properties

Permittivity (F/m) Conductivity (S/m)
Fatty tissue 6.19 0.4

Glandular tissue 46.13 2.4
Tumor 49.78 4.8

Figure 7 gives the comparisons between different TOFs when
Gaussian noise is added. In Fig. 7, the green triangular solid line
is the TOFs picked by the W-AIC method. These picked TOF points
are the TOFs of signals induced by glandular tissue. This is because
that the ultrasonic signals induced by normal glandular tissue arrive at
the receivers earlier than those of tumors. So the TOFs of two tumors
can not be picked by using the W-AIC method. The blue solid line
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and the black solid line with dots are the TOFs of tumors 1 and 2
picked by the proposed method. The corresponding theoretical values
of TOFs for two tumors are marked in red dashed and dash-dotted
lines, respectively. Comparing the TOFs picked by proposed method
with the corresponding theoretical values, the relative errors of tumor
1 are below 9.6% and those of tumor 2 are below 6.1%. By using the
proposed method, the TOFs of both tumors are efficiently picked while
the W-AIC method only picks the TOFs of glandular tissue.

Figure 7. A comparison between different TOFs when SNR is 10 dB.

Figure 8 shows the reconstructed images in a given Gaussian
noise environment. In Fig. 8, the red circles are the actual
contours of tumors. Fig. 8(a) gives the microwave absorption
distribution reconstructed by using TRM with assumed homogeneous
SV distribution. From Fig. 8(a), tumors and normal glandular tissue
are imaged. However, due to the effect of acoustic heterogeneity,
tumors and glandular tissue are not accurately reconstructed. Both
two tumors are blurred and have low image contrast. Since the TOFs
of two tumors are wrongly picked by W-AIC, the SV distribution
is estimated improperly and therefore the microwave absorption
distribution of tumors is unfaithful. Fig. 8(b) shows the microwave
absorption distribution reconstructed by using IRM with the TOFs
picked by the proposed method. Both tumors and glandular tissue have
good agreement with the actual tumor sizes and locations. Compared
with Fig. 8(a), two tumors have much better spatial resolution and
image contrast.

In this section, the feasibility of the proposed method has
been validated through two examples. Compared with the W-AIC
picker, the proposed method can efficiently and accurately pick the
tumors’ TOFs. This provides a guarantee for reconstructing the SV
distribution. Thus it greatly improves the quality of the reconstructed
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(a) (b)

Figure 8. (a) Microwave absorption properties reconstructed by
TRM with initially assumed SV distribution and Gaussian noise;
(b) Microwave absorption properties distribution reconstructed by
iterative reconstruction method with TOFs picked by proposed method
and Gaussian noise.

image. Furthermore, the proposed method still works for 3D case in
theory. However, the received data in 3D is large which results in
huge computational cost. So some accelerating method [29] should be
considered and utilized in 3D reconstruction.

5. CONCLUSIONS

In this paper, we propose an automatic TOF picker for multiple tumors
in MITAT. The proposed method combines the W-AIC picker and
induces an idea of separate extraction of TOFs. By using different
time windows, ultrasonic signals induced by multiple tumors are
separated. Then the TOFs of ultrasonic signals are extracted by using
the W-AIC picker. The proposed method decomposes the problem of
multiple sources into several single source problems. The efficiency
and accuracy of the proposed method are demonstrated through two
simulation examples. Moreover, it is also demonstrated that using the
TOFs picked by proposed method can greatly improve the accuracy of
reconstructed microwave absorption properties of dense breast tissue
and the image contrast of tumors in MITAT system.
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