Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-05
New Triangular Mass-Lumped Finite Elements of Degree Six for Wave Propagation
By
Progress In Electromagnetics Research, Vol. 141, 671-692, 2013
Abstract
Mass-lumped continuous finite elements allow for explicit time stepping with the second-order wave equation if the resulting integration weights are positive and provide sufficient accuracy. To meet these requirements on triangular and tetrahedral meshes, the construction of higher-degree elements for a given polynomial degree on the edges involves polynomials of higher degrees in the interior. The parameters describing the supporting nodes of the Lagrange interpolating polynomials and the integration weights are the unknowns of a polynomial system of equations, which is linear in the integration weights. To find candidate sets for the nodes, it is usually required that the number of equations equals the number of unknowns, although this may be neither necessary nor sufficient. Here, this condition is relaxed by requiring that the number of equations does not exceed the number of unknowns. This resulted in two new types elements of degree 6 for symmetrically placed nodes. Unfortunately, the first type is not unisolvent. There are many elements of the second type with a large range in their associated time-stepping stability limit. To assess the efficiency of the elements of various degrees, numerical tests on a simple problem with an exact solution were performed. Efficiency was measured by the computational time required to obtain a solution at a given accuracy. For the chosen example, elements of degree 4 with fourth-order time stepping appear to be the most efficient.
Citation
William Alexander Mulder, "New Triangular Mass-Lumped Finite Elements of Degree Six for Wave Propagation," Progress In Electromagnetics Research, Vol. 141, 671-692, 2013.
doi:10.2528/PIER13051308
References

1. Fried, I. and D. S. Malkus, "Finite element mass matrix lumping by numerical integration with no convergence rate loss," International Journal of Solids and Structures, Vol. 11, No. 4, 461-466, 1975.
doi:10.1016/0020-7683(75)90081-5

2. Tordjman, N., "Elements finis d'order eleve avec condensation de masse pour l'equation des ondes,", Ph.D. Thesis, L'Universite Paris IX Dauphine, 1995.

3. Cohen, G., P. Joly, and N. Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," Proceedings of the Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, G. Cohen, E. Becache, P. Joly, and J. E. Roberts, Eds., 270-279, SIAM, Philadelphia, 1995.

4. Mulder, W. A., "A comparison between higher-order finite elements and finite differences for solving the wave equation," Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering, J.-A. Desideri, E. Onate P. Le Tallec, J. Periaux, E. Stein, (eds.), 344-350, John Wiley & Sons, Chichester, 1996.

5. Chin-Joe-Kong, M. J. S., W. A. Mulder, and M. van Veldhuizen, "Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation," Journal of Engineering Mathematics, Vol. 35, No. 4, 405-426, 1999.
doi:10.1023/A:1004420829610

6. Giraldo, F. X. and M. A. Taylor, "A diagonal-mass-matrix triangular-spectral-element method based on cubature points," Journal of Engineering Mathematics, Vol. 56, No. 3, 307-322, 2006.
doi:10.1007/s10665-006-9085-7

7. Lyness, J. N. and D. Jespersen, "Moderate degree symmetric quadrature rules for the triangle," Journal of the Institute of Mathematics and Its Applications, Vol. 15, 19-32, 1975.
doi:10.1093/imamat/15.1.19

8. Keast, P., "Cubature formulas for the surface of the sphere," Journal of Computational and Applied Mathematics, Vol. 17, No. 1-2, 151-172, 1987.
doi:10.1016/0377-0427(87)90044-6

9. Heo, S. and Y. Xu, "Constructing fully symmetric cubature formulae for the sphere," Mathematics of Computation, Vol. 70, No. 233, 269-279, 2001.
doi:10.1090/S0025-5718-00-01198-4

10. Keast, P. and J. C. Diaz, "Fully symmetric integration formulas for the surface of the sphere in s dimensions," SIAM Journal on Numerical Analysis, Vol. 20, No. 2, 406-419, 1983.
doi:10.1137/0720029

11. Keast, P., "Moderate-degree tetrahedral quadrature formulas," Computer Methods in Applied Mechanics and Engineering, Vol. 55, No. 3, 339-348, 1986.
doi:10.1016/0045-7825(86)90059-9

12. Cohen, G., P. Joly, J. E. Roberts, and N. Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," SIAM Journal on Numerical Analysis, Vol. 38, No. 6, 2047-2078, 2001.
doi:10.1137/S0036142997329554

13. Mulder, W. A., "Higher-order mass-lumped finite elements for the wave equation," Journal of Computational Acoustics, Vol. 9, No. 2, 671-680, 2001.
doi:10.1142/S0218396X0100067X

14. Courant, R., K. Friedrichs, and H. Lewy, "Uber die partiellen Differenzengleichungen der mathematischen Physik," Mathematische Annalen, Vol. 100, No. 1, 32-74, 1928.
doi:10.1007/BF01448839

15. Zhebel, E., S. Minisini, A. Kononov, and W. A. Mulder, "Solving the 3D acoustic wave equation with higher-order mass-lumped tetrahedral finite elements," 73rd EAGE Conference & Exhibition, Extended Abstracts, A010, Vienna, Austria, May 2011.

16. Jund, S. and S. Salmon, "Arbitrary high-order finite element schemes and high-order mass lumping," International Journal of pplied Mathematics and Computer Science, Vol. 17, No. 3, 375-393, 2007.

17. Lax, P. and B. Wendroff, "Systems of conservation laws," Communications on Pure and Applied Mathematics, Vol. 31, No. 2, 217-237, 1960.
doi:10.1002/cpa.3160130205

18. Shubin, G. R. and J. B. Bell, "A modified equation approach to constructing fourth order methods for acoustic wave propagation," SIAM Journal on Scientific and Statistical Computing, Vol. 8, No. 2, 135-151, 1987.
doi:10.1137/0908026

19. Dablain, M. A., "The application of high-order differencing to the scalar wave equation," Geophysics, Vol. 51, No. 1, 54-66, 1986.
doi:10.1190/1.1442040

20. Chen, J.-B., "Lax-Wendroff and Nystrom methods for seismic modelling," Geophysical Prospecting, Vol. 57, No. 6, 931-941, 2009.
doi:10.1111/j.1365-2478.2009.00802.x

21. De Basabe, J. D. and M. K. Sen, "Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping," Geophysical Journal International, Vol. 181, No. 1, 577-590, 2010.
doi:10.1111/j.1365-246X.2010.04536.x

22. Gilbert, J. C. and P. Joly, "Higher order time stepping for second order hyperbolic problems and optimal CFL conditions," Computational Methods in Applied Sciences, Vol. 16, 67-93, Springer, Berlin, 2008.

23. Koornwinder, T., "Two-variable analogues of the classical orthogonal polynomials," Theory and Application of Special Functions, R. A. Askey (ed.), 435-495, Academic Press, New York, 1975.

24. Dubiner, M., "Spectral methods on triangles and other domains," Journal of Scientific Computing, Vol. 6, No. 4, 345-390, 1991.
doi:10.1007/BF01060030

25. Sherwin, S. J. and G. E. Karniadakis, "A new triangular and tetrahedral basis for high-order (hp) finite element methods," International Journal for Numerical Methods in Engineering, Vol. 38, No. 22, 3775-3802, 1995.
doi:10.1002/nme.1620382204

26. Heinrichs, W. and B. I. Loch, "Spectral schemes on triangular elements," Journal of Computational Physics, Vol. 173, No. 1, 279-301, 2001.
doi:10.1006/jcph.2001.6876

27. Bittencourt, M. L., "Fully tensorial nodal and modal shape functions for triangles and tetrahedra," International Journal for Numerical Methods in Engineering, Vol. 63, No. 11, 1530-1558, 2005.
doi:10.1002/nme.1325

28. Xu, Y., "On Gauss-Lobatto integration on the triangle," SIAM Journal on Numerical Analysis, Vol. 49, No. 2, 541-548, 2011.
doi:10.1137/100792263

29. Taylor, M. A., B. A. Wingate, and R. E. Vincent, "An algorithm for computing Fekete points in the triangle," SIAM Journal on Numerical Analysis, Vol. 38, No. 5, 1707-1720, 2000.
doi:10.1137/S0036142998337247

30. Bos, L., M. A. Taylor, and B. A. Wingate, "Tensor product Gauss-Lobatto points are Fekete points for the cube," Mathematics of Computation, Vol. 70, No. 236, 1543-1547, 2001.
doi:10.1090/S0025-5718-00-01262-X

31. Pasquetti, R. and F. Rapetti, "Spectral element methods on triangles and quadrilaterals: Comparisons and applications," Journal of Computational Physics, Vol. 198, No. 1, 349-362, 2004.
doi:10.1016/j.jcp.2004.01.010

32. Wingate, B. A. and M. A. Taylor, "Performance of numerically computed quadrature points," Applied Numerical Mathematics, Vol. 58, No. 7, 1030-1041, 2008.
doi:10.1016/j.apnum.2007.04.006

33. Hesthaven, J. S., "From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex," SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 655-676, 1998.
doi:10.1137/S003614299630587X

34. Shen, J., L.-L. Wang, and H. Li, "A triangular spectral element method using fully tensorial rational basis functions," SIAM Journal on Numerical Analysis, Vol. 47, No. 3, 1619-1650, 2009.
doi:10.1137/070702023

35. Li, H., J. Sun, and Y. Xu, "Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle," SIAM Journal on Numerical Analysis, Vol. 46, No. 4, 1653-1681, 2008.
doi:10.1137/060671851

36. Riviere, B. and M. F. Wheeler, "Discontinuous finite element methods for acoustic and elastic wave problems," Contemporary Mathematics, Vol. 329, 271-282, 1999.

37. De Basabe, J. D., M. K. Sen, and M. F. Wheeler, "The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion," Geophysical Journal International, Vol. 175, No. 1, 83-93, 2008.
doi:10.1111/j.1365-246X.2008.03915.x

38. Kaser, M. and M. Dumbser, "An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms," Geophysical Journal International, Vol. 166, No. 2, 855-877, 2006.
doi:10.1111/j.1365-246X.2006.03051.x

39. Lesage, A. C., R. Aubry, G. Houzeaux, M. Araya Polo, and J. M. Cela, "3D spectral element method combined with H-refinement," 72nd EAGE Conference & Exhibition, Extended Abstracts, C047, Barcelona, Spain, Jun. 2010.