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Abstract—Mass-lumped continuous finite elements allow for explicit
time stepping with the second-order wave equation if the resulting
integration weights are positive and provide sufficient accuracy. To
meet these requirements on triangular and tetrahedral meshes, the
construction of continuous finite elements for a given polynomial
degree on the edges involves polynomials of higher degree in the
interior. The parameters describing the supporting nodes of the
Lagrange interpolating polynomials and the integration weights are
the unknowns of a polynomial system of equations, which is linear in
the integration weights. To find candidate sets for the nodes, it is
usually required that the number of equations equals the number of
unknowns, although this may be neither necessary nor sufficient. Here,
this condition is relaxed by requiring that the number of equations does
not exceed the number of unknowns. This resulted in two new types
elements of degree 6 for symmetrically placed nodes. Unfortunately,
the first type is not unisolvent. There are many different elements of
the second type with a large range in their associated time-stepping
stability limit. To assess the efficiency of the elements of various
degrees, numerical tests on a simple problem with an exact solution
were performed. Efficiency was measured by the computational time
required to obtain a solution at a given accuracy. For the chosen
example, elements of degree 4 with fourth-order time stepping appear
to be the most efficient.
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1. INTRODUCTION

The finite-difference method is an attractive tool for the numerical
solution of the wave equation. It is easy to code up and straight-
forward to parallelize. Its accuracy degrades, however, in the presence
of sharp contrasts in material properties. Finite elements provide
superior accuracy if the mesh follows the interfaces between different
materials.

Finite-element discretization of the second-order wave equation
leads to a stiffness and a mass matrix. Mass lumping avoids the cost of
inverting the latter and allows for explicit time stepping. To maintain
the spatial accuracy and time-stepping stability, the weights obtained
by mass lumping should be positive and provide sufficient accuracy [1].

We would like to have finite elements that are (i) conforming,
(ii) have a symmetric placement of nodes, (iii) are unisolvent, (iv)
no loss of accuracy compared to elements without lumping, and (v)
lead to positive weights after lumping. The standard polynomial finite
elements on triangles or tetrahedra can meet these requirements only
for the one of lowest degree, the linear element. Elements of higher
degree on triangles require enrichment with polynomials of still higher
degree that reduce to the desired degree at the edges [1–3]. In 3D, the
degrees on the edges and faces and interior may all be different [4]. So
far, there exist triangular elements of degree 2 [1], 3 [2, 3], 4 [4], and
5 [5] on the edges, as well as tetrahedral elements of degree 2 [4] and
3 [5]. The triangular elements of degree 6 and 7, constructed by [6],
have their accuracy too low by one order for the second-order wave
equation.

Mass lumping is related to numerical quadrature. Given a
reference element, the row sums of its contribution to the mass matrix
are identical to numerical integration weights with a certain accuracy.
As there is a map from the triangle to one octant of the surface
of a sphere, there is a relation between quadrature on either [7–9].
The requirement of continuity across element boundaries provides an
additional constraint.

To construct an integration rule that is accurate for polynomials
up to a certain degree, a set of integration nodes need to be found,
together with integration weights. Numerical integration of all the
polynomials up to the given degree should provide the same as exact
integration. Consistency conditions [5, 8, 10, 11] limit the choice of
integration nodes to cases where the number of unknowns, involving
the parametrization of the nodes and the integration weights, equals
the number of equations. This leads to so-called rule patterns. Here,
this requirement will be relaxed by allowing the number of unknowns
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to exceed the number of equations.
Section 2 provides a review of the approach to the construction

of elements, following [5]. A new aspect is the parametrization of the
nodes, which simplifies the symbolic computations. Section 3 presents
two types of new elements of degree 6 of which only one type is useful.
Since it is not unique, several elements of this type are listed. Section 4
describes numerical tests, carried out to assess the relative performance
for elements of degrees 1 to 6. A discussion and conclusion follows at
the end.

2. METHOD

2.1. Requirements

The motivation for this work is the second-order wave equation

1
c2

∂2u

∂t2
−∆u = s,

with c(x) the velocity as a function of position x, u(t,x) the solution as
a function of time t and position, and s(t,x) an optional source term.
The latter can have the form s(t,x) = w(t)δ(x − xs), with w(t) the
signature or wavelet of a point source located at xs. Initial values are
u(0,x) and ∂u/∂t(0,x). These are usually set to zero in the presence of
a source term. Dirichlet, Neumann, or radiation boundary conditions
are supplied on the boundary of the domain Ω ⊂ Rn (n = 2 in this
paper). Its finite-element discretization with Lagrange polynomials as
basis functions leads to a mass and stiffness matrix. To enable explicit
time-stepping, the mass matrix is replaced by its diagonal, lumped
version by taking row sums per element.

As already mentioned in the introduction, the following
requirements are imposed in this paper: (i) conformity or continuity
of the solution across element boundaries, (ii) symmetric arrangement
of nodes, (iii) unisolvency, (iv) no loss of accuracy due to lumping,
(v) positive integration weights. The last condition is necessary for
numerical stability if a standard second-order time-stepping scheme is
used for the explicit time stepping. Among the elements that obey
these conditions, those with the smallest number of nodes are usually
preferred for efficiency.

Conformity for polynomials of highest degree M requires M + 1
points on the edges, including the vertices, leading to 3M points
on the boundary of each triangular element. To support Lagrange
polynomials of degree M on the triangle, given by the set PM , a total
of 1

2(M + 1)(M + 2) nodes are required, leaving 1
2(M − 2)(M − 1)

points for the interior. As it turns out, elements with these nodes
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cannot provide positive integration weights except for the standard
linear element of degree M = 1.

To obtain positive integration weights, polynomials of degree M ′,
usually larger than M , can be chosen in the interior of the triangle.
These should vanish on the element boundaries. If we consider the
reference element with points (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 ≤ 1 − x − y ≤ 1, the space of the additional polynomials can be
characterized by PM ′−3 × [b], with bubble function b = xy(1 − x − y)
and [b] the subspace generated by this function. The space of Lagrange
polynomials is then PM ⊕ PM ′−3 × [b]. The total number of nodes
becomes 3M + 1

2(M ′ − 2)(M ′ − 1) as compared to 1
2(M + 1)(M + 2)

for the standard elements.
The numerical integration rule should be accurate up to degree

q = M + M ′ − 2 [12]. The −2 term is due to the second-order spatial
derivatives in the wave equation.

2.2. Rule Patterns

The requirement that the node be symmetrically arranged means that
nodes should be selected from one of the 6 equivalence classes listed
in Table 1. The classes are enumerated sequentially, with classes 1–3
referring to the boundary and 4–6 to the interior. This differs from the
notation in [5, 8, 10].

Table 1. Equivalence classes for the triangle. For each class, one of
the nodes is specified on the reference element. The number of nodes
per class is nc.

class node nc type

1 (0, 0) 3 vertices

2 (1/2, 0) 3× 1 edge midpoints

3 (α, 0) 3× 2 interior edge points

4 (1/3, 1/3) 1 center

5 (α, α) 3 interior

6 (α, β) 6 interior

A rule pattern K is a set of 6 numbers, defining the number
of nodes selected from each class. The standard linear element has
K = {1, 0, 0, 0, 0, 0}. The pattern should be able to support the
Lagrange polynomials used as basis functions for the finite-element
discretization.

Given a rule pattern, the requirement that numerical quadrature
be exact up to a certain degree q yields a system of equations that is
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polynomial in the parameters describing the nodes and linear in the
integration weights. Following [5, 8, 10, 11], the choice of polynomials
can be restricted to those of the form fl,m = (xy)l(1 − x − y)m with
0 ≤ 2l + m ≤ q and 0 ≤ m ≤ l. The system of equations becomes

∫ 1

0
dx

∫ 1−x

0
dy fl,m =

6∑

i=1

Ki∑

j=1

wi,j

nci∑

k=1

fl,m(xi,j,k, yi,j,k),

0 ≤ 2l + m ≤ q, 0 ≤ m ≤ l.

(1)

The summations are carried out over class i, the corresponding set
of nodes j, if any, and the total of nci nodes that can be obtained
from one point by the symmetries of the triangle, the dihedral group
of order 6. If that one point is (xi,j,1, yi,j,1) for a given class i and
point j, the other nodes (xi,j,k, yi,j,k), k = 2, . . . , nci, can simply be
obtained by taking the first pair of each of the permutations of the
triple (xi,j,1, yi,j,1, 1− xi,j,1− yi,j,1). The unknowns are the integration
weights wi,j and the parameters that define the nodes for classes 3, 5,
and 6, as listed in the second column of Table 1.

2.3. Selection of Nodes

Because the system (1) may be difficult to solve, it is natural to restrict
the number of choices by ensuring that the number of equations equals
the number of unknowns [5, 8, 10, 11]. Here, this condition is relaxed by
requiring that the number of equations ne does not exceed the number
of unknowns nu. The condition nu ≥ ne is necessary nor sufficient, but
it is unlikely that a solution will exist otherwise.

Table 2 contains earlier results of Table 5 in [5] and extends it
beyond degree M = 5. The first pair of columns define the degrees
of the polynomials on the edges, M , and in the interior, M ′. The
third lists the degree q for which quadrature should be exact. We
should have q = M + M ′− 2, but there are two exceptions, considered
by [6] and marked here by an asterisk. For given {M,M ′, q}, there
may be several rule patterns K, in which case an additional version
number, v, is included. A node set for quadrature is labeled by
{M,M ′, q, v}. The fifth column of Table 2 lists the main result, the
rule pattern K defining the number of nodes selected from each class.
The following 3 columns define the number of equations, ne, of the
polynomial system, the number of unknowns, nu, which are the node
parameters and integration weights, and the total number of nodes
n =

∑6
i=1 Kinci. The last column contains remarks related to the

results found in Section 3 and includes references for known elements.
In the absence of a remark, it is presently unknown whether or not a
proper solution exists.
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2.4. Parametrization

A suitable parametrization, different from the one in column 2 of
Table 1, can result in a simpler form of the system of polynomial
equations. Consider, for instance, the node (α, 0) of class 3, a point
on the edge with 0 < α < 1

2 excluding the vertex (class 1, α = 0)
and midpoint (class 2, α = 1

2). Given one point in an equivalence
class, the set of nodes can be found by taking all the permutations of
(x, y, 1− x− y) and dropping the last entry of each triple. For (α, 0),

Table 2. Rule patterns. M is the degree on the edges, M ′ in the
interior, quadrature is exact through degree q. Versions are labeled
by v, K defines the number of points for each equivalence class, not
counting their symmetric counterparts, with Kj corresponding to class
j. The number of equations is ne, the number of unknowns (weights
and position parameters) is nu, and the total number of nodes is n.

M M ′ q v K ne nu n remarks

1 1 1 1, 0, 0, 0, 0, 0 1 1 3 OK

2 2 2 1, 1, 0, 0, 0, 0 2 2 6 zero weight

3 3 1, 1, 0, 1, 0, 0 3 3 7 OK, [1]

4 4 1, 1, 0, 0, 1, 0 4 4 9 OK

3 3 4 1, 0, 1, 1, 0, 0 4 4 10 neg. weight

4 5 1, 0, 1, 0, 1, 0 5 5 12 OK, [2, 3]

5 6 1, 0, 1, 0, 2, 0 7 7 15 OK

4 5 7 1, 1, 1, 0, 2, 0 8 8 18 OK, [4]

6 8 1, 1, 1, 1, 1, 1 10 10 22 OK

5 6 9 1, 0, 2, 1, 3, 0 12 12 25 no solution

7 10 1 1, 0, 2, 0, 3, 1 14 14 30 OK, [5]

2 1, 0, 2, 0, 5, 0 14 15 30 no solution

6 7 11 1, 1, 2, 0, 5, 0 16 16 33 no solution

8 12 1 1, 1, 2, 0, 5, 1 19 19 39 complex α on edge

2 1, 1, 2, 0, 7, 0 19 20 39 no solution

9 12∗ 1, 1, 2, 1, 3, 3 19 22 46 [6], q too small

9 13 1 1, 1, 2, 1, 1, 4 21 21 46 not unisolvent

2 1, 1, 2, 1, 3, 3 21 22 46 OK

3 1, 1, 2, 1, 5, 2 21 23 46

4 1, 1, 2, 1, 7, 1 21 24 46

5 1, 1, 2, 1, 9, 0 21 25 46 no solution
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7 8 13 1, 0, 3, 0, 7, 0 21 21 42 no solution

9 14 1 1, 0, 3, 1, 5, 2 24 24 49

2 1, 0, 3, 1, 7, 1 24 25 49 no solution

3 1, 0, 3, 1, 9, 0 24 26 49 no solution

10 14∗ 1, 0, 3, 0, 4, 3 24 24 51 [6], q too small

10 15 1 1, 0, 3, 0, 4, 4 27 27 57

2 1, 0, 3, 0, 6, 3 27 28 57

3 1, 0, 3, 0, 8, 2 27 29 57

4 1, 0, 3, 0, 10, 1 27 30 57 no solution

5 1, 0, 3, 0, 12, 0 27 31 57 no solution

11 16 1 1, 0, 3, 0, 1, 7 30 30 66

2 1, 0, 3, 0, 3, 6 30 31 66

3 1, 0, 3, 0, 5, 5 30 32 66

4 1, 0, 3, 0, 7, 4 30 33 66

5 1, 0, 3, 0, 9, 3 30 34 66

6 1, 0, 3, 0, 11, 2 30 35 66

7 1, 0, 3, 0, 13, 1 30 36 66 no solution

8 1, 0, 3, 0, 15, 0 30 37 66 no solution

8 9 15 1, 1, 3, 1, 9, 0 27 27 52 no solution

10 16 1 1, 1, 3, 0, 8, 2 30 30 60

2 1, 1, 3, 0, 10, 1 30 31 60

3 1, 1, 3, 0, 12, 0 30 32 60

11 17 1 1, 1, 3, 0, 5, 5 33 33 69

2 1, 1, 3, 0, 7, 4 33 34 69

3 1, 1, 3, 0, 9, 3 33 35 69

4 1, 1, 3, 0, 11, 2 33 36 69

5 1, 1, 3, 0, 13, 1 33 37 69 no solution

6 1, 1, 3, 0, 15, 0 33 38 69 no solution

12 18 1 1, 1, 3, 1, 2, 8 37 37 79

2 1, 1, 3, 1, 4, 7 37 38 79

3 1, 1, 3, 1, 6, 6 37 39 79

4 1, 1, 3, 1, 8, 5 37 40 79

5 1, 1, 3, 1, 10, 4 37 41 79

6 1, 1, 3, 1, 12, 3 37 42 79

7 1, 1, 3, 1, 14, 2 37 43 79

8 1, 1, 3, 1, 16, 1 37 44 79

9 1, 1, 3, 1, 18, 0 37 45 79 no solution
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this results in
{(α, 0), (0, α), (α, 1− α), (1− α, α), (1− α, 0), (0, 1− α)} . (2)

As already mentioned, we only need to consider polynomials of the
form fl,m(x, y) = (xy)l(1 − x − y)m with 0 ≤ m ≤ l. Its numerical
integration in Equation (1) produces a polynomial

Ci,l,m =
nci∑

k=1

fl,m(xi,j,k, yi,j,k),

where i enumerates the class, j refers to one of the Ki nodes for that
class, and (xi,j,k, yi,j,k), k = 1, . . . , nci refers to the full set of nodes
that can be obtained by symmetry. For class 3, C3,l,m is zero with the
exception of

C3,0,0 = nc3 = 6, C3,l,0 = 2[α(1− α)]l, l > 0.

The dependence on α with 0 < α < 1 suggests the choice α =
1
2(1−√1− α̃) with 0 < α̃ < 1, leading to C3,l,0 = 2(α̃/4)l for l > 0.

For class 5 with point (α, α), 0 < α < 1
2 ,

C5,m+k,m = α2m+k(1− 2α)m
[
2(1− 2α)k + αk

]
,

where k = m− l ≥ 0. It is not clear to me how to simplify this with a
suitable substitution for α.

Class 6 has (α, β) with, for instance, 0 < α < 1
2 , 0 < β <

min(α, 1− 2α). Then,

C6,m+k,m = 2[αβ(1− α− β)]m
{

[αβ]k + [α(1− α− β)]k

+[β(1− α− β)]k
}

.

One choice that simplifies this expression is β = 1
2(1 − α)(1 − w),

yielding

C6,m+k,m =
2

4m+k
[α(1− α)2(1− w2)]m

{
(1− w2)k(1− α)2k

+[2α(1− α)]kFk(w)
}

.

Here, Fk(w) = (1 − w)k + (1 + w)k. Its expansion produces a sum
with only even powers of w. Therefore, C6,m+k,m depends on w2. This

suggests the substitution β = 1
2(1− α)(1−

√
1− β̃), 0 < β̃ ≤ 1.

Another choice is u = 3[(α + β)− (α2 + αβ + β2)], v = 27αβ(1−
α − β). Its inverse has 6 solutions for (α, β), one of which suffices to
characterize the 6 nodes in the equivalence class. Then,

C6,m+k,m = 6
( v

27

)m gk(u, v)
9k

,



Progress In Electromagnetics Research, Vol. 141, 2013 679

with gk(u, v) a polynomial in u and v. The ones of lowest degree are
g0(u, v) = 1, g1(u, v) = u, g2(u, v) = 3u2−2v, g3(u, v) = 9u(u2−v)+v2,
g4(u, v) = 9u2(3u2 − 4v) + 2(2u + 3)v2. The domain of u and v that
defines proper points is a subset of u ∈ (0, 1), v ∈ (0, 1), given by
max(0, 1−3ũ−2ũ3/2) < v < 1−3ũ+2ũ3/2, with ũ = 1−u. Note that
the lower bound of v is positive if 3/4 < u < 1.

2.5. Polynomial System

The polynomial system can be expressed as Aw = b, with the vector
w containing the nw =

∑6
i=1 Ki integration weight and b the results of

exact integration. Both the matrix A, with ne rows and nw columns,
and the vector b consist of polynomials in the node parameters.

For the elements of lower degree, a symbolic algebra package will
readily provide a solution. For elements of higher degree, a Gröbner
basis approach may still provide a negative result after running for a
fairly short time in cases where a solution does not exist. However,
given its exponential complexity, it usually runs out of computer
memory after hours or days if there are one or more solutions.

As an alternative, a symbolic procedure was coded that attempts
to reduce the matrix A to upper block triangular form, using
polynomial quotients but avoiding rational functions and fractions. In
that way, a possibly simpler polynomial system can be obtained. The
result depends on the ordering of the nodes and the unknowns. We
can, for instance, adopt the ordering implicit in Table 1, so classes 1
to 6, or take classes 1, 2, 4, 3, 5, 6 with parameter-free nodes first.
This procedure had already been used to find the elements reported
in [13]. For the current paper, it readily identified the non-existence of
solutions, which then could be confirmed independently by a Gröbner
basis approach. However, for elements of degree above 4, it did not
produce positive results.

Newton’s method is the obvious choice to compute a numerical
solution of the polynomial system. The use of the pseudo-inverse of
the Jacobian of the system of equations helps in the presence of a null
space. Given the oscillatory character of polynomials, the behavior of
the method will strongly depend on the initial choice of parameters.
Once a root has been found, a computation of the null space of the
Jacobian at that root, if any, gives an indication about where nearby
roots may be found.

In some cases, with nu = ne, the solution did not exist anyway. In
other cases, with nu > ne but also for nu = ne, multiple solutions may
exist. Once a solution is found, it should be verified that the weights
are positive and nodes lie within the element. Among several elements
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for a given degree M , the one with the lowest computational cost is to
be preferred. In case of multiple roots or different rule patterns with
the same number of nodes, one could consider other criteria for node
selection, for instance, the spatial accuracy or the Courant-Friedrichs-
Lewy (CFL) condition [14] that determines the maximum allowable
time step of an explicit time-stepping scheme. An example can be
found in 3D for degree 3: there are two solutions for the same rule
pattern with comparable spatial accuracy and one allows for a larger
maximum time step than the other [15].

3. RESULTS

The last column of Table 2 indicates if a solution has been found and if
it is proper. An empty line corresponds to an as yet unknown status.
In all cases where the triangular simplification procedure indicated the
non-existence of a solution, this could be confirmed by a Gröbner basis
approach.

Table 3 lists the integration weights in column 5 and node
parameters in their simplest form in column 6. For class 3, only α
is given, corresponding to the point (α, 0) on the reference triangle as
well as the points that follow by symmetry, as specified in Equation (2).
Class 5 has a parameter α and 3 nodes

{(α, α), (α, 1− 2α), (1− 2α, α)} . (3)

For class 6, the two parameters α and β correspond to the 6 points

{(α, β), (β, α), (α, 1− α− β), (1− α− β, α),
(β, 1− α− β), (1− α− β, β)} (4)

on the reference triangle.
For {5, 7, 10, 1}, there happens to be the relation w6,1 =

27/[61600 v{u2(3 − 4u) − v(4 − 6u + v)}]. The full solution has only
been found in numerical form [5].

The element {6, 8, 12, 1} has a solution. Partial elimination
provides u = 9/13 and v = 27/91 for the node set of class 6 in the
interior and α̃ = (1791 ± √332081)/2275 for the 2 node sets of class
3 on the edges. This leads to a complex value for a coordinate of the
latter, so the solution has to be discarded.

The results for {M, M ′, q, v} = {6, 9, 13, 1} and {6, 9, 13, 2} are
new. It is presently unknown if there are other useful solutions
for {6, 9, 13, 1}. For {6, 9, 13, 2}, the dimension of the null space of
the Jacobian is 1. Perturbations of the parameters along that null-
space vector converge to slightly different sets of parameters. As
mentioned earlier, one could introduce another criterion to further
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constrain the choice of node parameters. The table lists a subset of
the many elements found, including one with largest (version 2D) and
the smallest (version 2E) CFL number discovered so far.

Table 3. Triangular elements of degree M , enriched with polynomials
of degree M ′ in the interior. Numerical quadrature is exact up to and
including degree q. Multiple versions are denoted by v. For each of the
equivalence classes, the integration weights and parameters that define
the node positions, modulo symmetry, are listed. The last column
provides a crude estimate of the CFL number.

M M′ q v class weight position parameters CFL

1 1 1 1 1/6 1.14

2 2 2 1 0
2 1/6

2 3 3 1 1/40 0.367
2 1/15
4 9/40

2 4 4 1 (11 −√13)/720 0.192
2 (5 −√13)/45
5 (29 + 17

√
13)/720 (7 −√13)/18

3 3 4* 1 −1/120
3 1/20 1

2 (1 − 1/
√

3)

4 9/40

3 4 5 1 (8 −√7)/720 0.210

3 (7 + 4
√

7)/720 1/2 −
√

1/(3
√

7) − 1/12
5 7(14 −√7)/720 (7 − √7)/21

3 5 6 1 0.00356517965360224101681201 0.122
3 0.0147847080884026469663777 0.307745941625991646104616
5 0.0509423265134759070757019 0.118613686396592868190663

0.0825897443227832246413973 0.425340125989747152025431
4 5 7 1 1 1/315 0.128

2 4/315
3 3/280 1

2 (1 − 1/
√

3)

5 163/2520 − 47
√

7/8820
(
5 − √7

)
/18

163/2520 + 47
√

7/8820
(
5 +

√
7

)
/18

4 6 8 1 1 0.00150915593385883937469324 0.0804
2 0.0101871481261788846308014
3 0.00699540146387514358396201 0.199632107119457219140683
4 0.0660095591593093891810431
5 0.0234436060814549086935898 0.0804959191700374444460458
6 0.0477663836054936418696553 0.107591821784867520262175,

0.302912783038363411733216

5 7 10 1 1 0.000709423970679245979296007 0.0512
3 0.00348057864048921065844268 0.132264581632713985353888

0.00619056500367662911411813 0.363298074153686045705506
5 0.0116261354596175711394984 0.0575276844114101056608175

0.0459012376307628573770191 0.256859107261959076063891
0.0345304303772827935283885 0.457836838079161101938503

6 0.0272785759699962595486715 0.0781925836255170219988860,
0.221001218759890007978128

6 9 12* 1 0.000484273075994968890216176
2 0.00324666904899330536180752
3 0.00203173085650850495963829 0.100933386433866788849765

0.00302271651210398099802707 0.268847661978903971786945
4 0.0340548001891207107805596
5 0.00804000156250452776502089 0.0484777152222004138468168

0.0122972050038284373019703 0.151232747274544209035183
0.0177785008242312273394174 0.420707459515049656508480

6 0.0171924926132243666716163 0.0497413284921621116798404,
0.369423421302030768191185

0.0142325352718470962147968 0.0548913882425097915126526,
0.181151319127438714893044

0.0202547332903530326966121 0.168539950027269118385758,
0.284179721960440080344851
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6 9 13 1∗ 1 0.0000779588662078435375178633
2 0.00339681189525519904330250
3 0.000665051266109643505640721 0.0279179934866402859608917

0.00362789876510517486953904 0.241092107358188959592334
4 0.0350469796677262076302804
5 0.0230539870369004268211275 0.208636402173497335322249
6 0.00661471763751599238359865 0.0257804392908054300630399,

0.0867676995664192358459690
0.0170275218459173680417388 0.0472834372836282533842341,

0.365554923752573525334004
0.0169179833927653607471877 0.0741366666993740353225476,

0.183636359341933759692246
0.0193746182487836911462744 0.155330109405837631767247,

0.489368383573739089292973
6 9 13 2A 1 0.000457675139493623813925192 0.00349

2 0.00356710433276790665253250
3 0.00200904168539817921681236 0.0983827447888902549102473

0.00329790979960503607408593 0.265184284071611887908027
4 0.0309868940435770601241317
5 0.00754499275110935015502269 0.0472624300832259203741458,

0.0204626944006607366113472 0.185099441203658405865967
0.000323359777502655800628789 0.223774737049375297733313

6 0.0183536419239484914353561 0.0529938580218328753081271,
0.366283836408378472503743

0.0159637446787891427726817 0.0599549977665722555070471,
0.175353427134619545870900

0.0223665997042291706303138 0.169238966075593432510120,
0.336402620369427999586902

6 9 13 2B 1 0.000456928006240664439373013 0.00960
2 0.00357152911942528341148961
3 0.00200874482041614626394457 0.0985365531868998795134592

0.00329284439557021916630437 0.265248606010655578726896
4 0.0309409861133727098327018
5 0.00752697858686357326415971 0.0471674454162278496208427

0.0205974639339399517320604 0.185190718030577720879312
0.000457338442846254095675932 0.470101135213530921357358

6 0.0181730799890969293541900 0.0529447728826024902425443,
0.365369388940646877380306

0.0159364496926559939859256 0.0599391280670389459566876,
0.175125077083853428192915

0.0224602643720407294528058 0.169469754802458550713639,
0.494548713123800897107354

6 9 13 2C 1 0.000457526099467763597178878 0.00544
2 0.00356872443475518029031584
3 0.00200869874130545983070574 0.0983877400941390268764049

0.00329594726422656522354939 0.265124184082575332680128
4 0.0309429434093347400249113
5 0.00754195983617776527126970 0.0472495946873712019571668

0.0206027550763567864758638 0.185255094929089930498555
0.000146427004224410481372409 0.453454684662496332114277

6 0.0183221247011154001634653 0.0529466980978983572077756,
0.366160858287851590299815

0.0159620953600417771560464 0.0599621505359141641988445,
0.175314126596774109693725

0.0224286138062640545640809 0.335975878031815849175464,
0.494517960919347201225182

6 9 13 2D 1 0.000454987233833027795019629 0.0387
2 0.00355887313687377058494543
3 0.00197187750035259785092208 0.0971182187637092591147781

0.00326405309041122550397833 0.265081457109796002621167
4 0.0312076201071798865578207
5 0.00751308598168073829542106 0.0472995857353385920258670

0.0141271046812814012527394 0.170113123718258152434644
0.0180228944641299796145248 0.416718033745028399150151

6 0.0183416350514485381364864 0.0527759379996054919028731,
0.366011227036634594000994

0.0152607589589274236884861 0.0580443861948438701313498,
0.174910053392499448673606

0.0174552659654307749558317 0.171896598740400978122421,
0.290177530266989875101690

6 9 13 2E 1 0.000457122273368821290007004 0.000565
2 0.00354339780534438440899894
3 0.00200624543058909472095270 0.0981884861513482009941253

0.00328698266411052346335793 0.264562468647341222877659
4 0.00296115457958097083809892
5 0.00754001264105686566146204 0.0472721194967663136860980

0.0208058065966998993976974 0.185820264979329876077102
0.0105995701595519862981659 0.313544917553124746468761

6 0.0181733670633909800708399 0.0524733019403075814209560,
0.366393001460113316085618

0.0159903777850494079841022 0.0600405892192976491877166,
0.175317151926903471833022

0.0219098798889188534262319 0.166786803094847451227818,
0.495962307385280093776557
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7 10 14∗ 1 0.000227080483407594748688130
3 0.00119069188779806730691585 0.0797278918581723496164217

0.00209094477794537218122694 0.201362903928456465285586
0.00267096488057280473904062 0.378955157738687405782957

5 0.00414456305244987205340665 0.0331662350717603295320680
0.0215081779064106637197692 0.167165353362395514002772
0.0236326025323162061101240 0.280558896296460379414635
0.0142371781018152407429378 0.479984608210471941403749

6 0.0139626184559205712061905 0.0493368139566529892962173,
0.280983446243334765057159

0.0103757635344828902436735 0.0499184036996153092839381,
0.132175663629467193642302

0.0211675487584138389688230 0.140658191881288355128006,
0.342869978275311298138353

The polynomials in the interior are linear combinations of the
product of the bubble function b = xy(1− x− y) and the polynomials
in PM ′−3 = P6. However, the 28 points that should support the
Lagrange interpolating polynomials of degree 6 are degenerate for
the case {6, 9, 13, 1}, making this choice unsuitable for finite-element
applications.

The elements {6, 9, 12} and {7, 10, 14} of [6] have too low a
value of q in the present context of wave equation modelling. For
{6, 9, 12}, the null space of the Jacobian used in Newton’s method
has dimension 3 and there exist other nearby solutions. The listed
values describe just one of those. For {7, 10, 14}, there are not enough
points to support polynomials in the span of PM ⊕ PM ′−3 × [b], with
M = M ′ = 7. Instead, a symmetric set can be chosen in the span of
P7 ⊕ P9 × [b]⊕ P1 × [b3].

Figure 1 shows the distributions of nodes for the simplest elements
of degree 1 to 6. Those of degree 6 and with 46 nodes are new. The
Jacobian of its corresponding polynomial system has a one-dimensional
null space at the root and there are other solutions close to the one

1 2 3 4 5

6,2A 6,2B 6,2C 6,2D 6,2E

Figure 1. Nodes for the elements of degree M from 1 to 6, mapped
to the equilateral triangle. The number of nodes is 3, 7, 12, 18, 30,
and 46, for increasing degree. For degree 6, the variants 2A to 2E are
shown, from left to right.
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shown. The figure displays 5 of the many variants. Among those found
so far, variant 6,2D has the largest and 6,2E the smallest CFL number.

4. PERFORMANCE

4.1. Time-stepping Stability

Elements of high degree are more costly then those of lower degree
since the number of nodes increases with the degree of the element. The
time-stepping stability limit becomes more restrictive at the same time.
Elements of higher degree can only be more efficient than those of lower
degree if their increased cost can be compensated by using less elements
of larger size. The efficiency of an element can be quantified by the
computational time needed to obtain a solution with a given accuracy.
This will depend on many factors, for instance, code implementation,
compilers, hardware, and the chosen problem.

To assess the cost, an estimate of the bound for time-stepping
stability is needed. Then, numerical experiments for the constant-
density acoustic wave equation are carried out for a simple test problem
to determine the efficiency of the various elements.

The standard second-order time discretization of the wave
equation is stable if the time step ∆t obeys the CFL condition [14],
which in this case reads ∆t ≤ 2/

√
ρ(L), where ρ(L) is the spectral

radius of L = M−1
L K, the inverse lumped mass matrix ML applied

to the stiffness matrix K. One way to estimate this bound is to
use the fact that the largest eigenvalue is bounded by the largest
row sum of absolute values of L. Sharper estimates can be found
by considering simpler examples, for instance, by Fourier analysis on
a periodic mesh. Here, we let ∆t ≤ CFL min(di/c), where CFL is a
constant and min(di/c) denotes the minimum over all elements in the
computational domain of the ratio of the diameter, di, of the inscribed
circle and the the local sound speed, c, for each triangle, taking the
largest value over the nodes of that triangle. The constant, CFL, is
estimated by considering the spectral radius σ0 of L0 for a unit sound
speed on a single reference element with natural (Neumann) boundary
conditions. Then, CFL = 2/(di,0

√
σ0), where di,0 = 2 − √

2 is the
diameter of the inscribed circle of the reference element. Estimates of
CFL obtained in this way are listed in the last column of Table 3. For
degrees 1 to 5, [16] estimated values of 1.00, 0.33, 0.23, 0.14 and 0.056,
respectively, which agree surprisingly well with the crude estimates
1.14, 0.367, 0.210, 0.128 and 0.0512 found here.

Higher-order time stepping can be accomplished by substituting
higher time-derivatives with spatial derivatives using the partial
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Table 4. The factor
√

σt by which CFL should be multiplied for time
stepping of order Mt.

Mt 2 4 6 8 10 12 14 16 18√
σt 1 1.732 1.376 2.317 1.544 2.771 1.569 3.044 1.571

differential equation. This approach is known as the Cauchy-
Kovalewski or Lax-Wendroff procedure [17] or the modified equation
approach [18] or Dablain’s scheme [19]. For an even time-stepping
order Mt, the truncated Taylor series in the absence of source terms is

un+1−2un+un−1 = 2
Mt/2∑

m=1

(∆t)2m

(2m)!
∂2mun

∂t2m
= 2

Mt/2∑

m=1

(−∆t2L)m

(2m)!
un. (5)

Here, un denotes the discrete solution at time tn = t0 + n∆t. The
right-hand side involves repeated application of the spatial operator
L. Below, the order of the time-stepping scheme Mt is taken as
the smallest even integer larger than or equal to M + 1, Mt =
2floor(1 + 1

2Mt), with M the degree of the spatial discretization on
the edges. The corresponding CFL should then be multiplied by a
factor

√
σt, which can be found by considering the domain of η that

corresponds to the range β ∈ [0, 1], where

β = −1
2

Mt/2∑

m=1

(−4η)m

(2m)!
. (6)

Here, η can be identified with any of the eigenvalues of 1
4∆t2L.

Expression (6) represents the truncated series of sin2(
√

η) around
η = 0. If the domain of η is a single interval, σt can be taken as its
maximum. For Mt = 10, two intervals are obtained, 0 ≤ η ≤ 1.54354
and 1.6052 ≤ η ≤ 2.81526. In that case, σt should be set to the
maximum of the leftmost interval, 1.54354. The same approach should
be taken for Mt ≥ 14. Table 4 lists the results for a range of time-
stepping orders. The alternating values of

√
σt approach π/2 or π for

large Mt.
For Mt ≥ 8, these results differ from the values in Table 1 of [20],

in the row for 1D, multiplied by 2/π because there, a pseudo-spectral
method is considered. [20] has 1.38307 for Mt = 8, whereas [21] has
2.317, the same value as found here. For Mt = 10, they have 1.38243
and 2.783, respectively, both different from the results listed above.
[22] find the same results as reported here. The values in the column
labeled with k = 0 of their Table 1 are equal to 4σt.
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4.2. Numerical Experiment

The domain for the test problem is the unit square with a unit
propagation speed. A delta-function source at the center emits a
waveform w(t) = [4t/T (1 − t/T )]8 for 0 ≤ t ≤ T with a duration
T = 0.1. The solution on the finite-element nodes at time t = 1.25
is compared to the exact solution, shown in Figure 2. Zero Neumann
boundary conditions were imposed, reflecting the circular wavefront
back into the domain.

x

y
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-0.01
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0.02

0.03

0.04

Figure 2. Exact solution for a point source in the center of the unit
square with unit speed at time 1.25. The circular wavefront with a
positive amplitude has propagated from the source to the boundary,
where is was reflected, and back into the domain, passing the center.
The boundaries have a reflection coefficient −1, resulting in a negative
amplitude (dark grey). The second reflection is again positive (light
grey).

Elements of polynomial degrees M = 1 to 6 are considered. For
the last, variant 2D is selected since this has the largest CFL number
of the elements found so far. For the time step, half of the estimated
maximum value is taken to be on the safe side.

As a measure of the accuracy, the maximum error measured at
a dimensionless time of 1.25 over all the nodes on the finite-element
mesh, divided by the maximum absolute value of the solution, is taken.
Figure 3(a) shows this error as a function of N1/2, where N is the
total number of degrees of freedom. The theoretical asymptotic error
curves behave as N−(M+1)/2 and are drawn as well. The picture shows
that asymptotically, the elements of higher degree are more accurate
then those of lower degree. However, what counts in practice is the
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Figure 3. (a) Normalized maximum error over the nodes in the
computational domain as a function of N1/2, with N the number
of nodes or degrees of freedom, for elements of degree 1 to 6.
Asymptotically, the higher the order, the smaller is the error. (b) The
same errors as a function of the computational time. Elements of
degree 3 or 4 are the most efficient, except if very high accuracy is
desired.
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Figure 4. As Figure 3, but with second-order time stepping. At
smaller errors, the second-order time-stepping error starts to dominate
(a). Again, the elements of degree 3 or 4 are the most efficient (b). For
moderate accuracy, the efficiency is nearly the same as with higher-
order time stepping.
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computational wall-clock time. The behavior of the error as a function
of the computational time required for time stepping only is depicted
in Figure 3(b). Here, the stiffness matrix was assembled on the fly to
save storage, using precomputed matrices for the reference element [4].
For the current test problem, for the lowest degree, M = 1, an element
of degree 3 or 4 will suffice in practice. Only when very high accuracy
is needed, the element of degree 6 will be more efficient.

A time-stepping scheme of second order is less costly than one of
higher order. Figure 4 shows results for second-order time stepping and
Figure 5 for fourth-order time stepping. Overall, the degree 4 element
with fourth-order time stepping is the most efficient.
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Figure 5. As Figure 3, but with fourth-order time stepping. The
degree 4 element is the most efficient.

A comparison between mass-lumped elements up to degree 4
and higher-order finite-difference methods was carried out earlier [4],
demonstrating that the finite-difference method is less efficient than
the finite-element method in the presence of a sharp contrast in the
wave propagation speed.

5. DISCUSSION AND CONCLUSION

Mass-lumped elements of the type described here allow for explicit time
stepping and have a spatial accuracy of order M + 1 in the element
diameter if the degree on the edges is M . Several new elements of
degree 6 have been found. Simple estimates of the CFL number that
determines the maximum allowable time step show a decrease of this
number with increasing degree. The new elements of degree 6 have a
wide range of CFL numbers. A comparison of efficiency of elements of
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various degrees show that elements of higher degree are more accurate
than those of lower degree for a given number of degrees of freedom.
In terms of computational time required to reach a given accuracy,
however, elements of degree 4 with fourth-order time stepping perform
best in a simple example with a known exact solution. The element of
degree 6 will only be more efficient if very high accuracy is needed.

It should be noted that there are several alternatives for these
types of elements. If one abandons the symmetric arrangement of
nodes, quadrature rules based on mapping the square to the reference
triangle can be simply obtained from tensorial product orthogonal
polynomials [23–27]. [28] considers both asymmetric and symmetric
quadrature rules. For the last ones, the known elements of degree 3 and
4 are recovered. Fekete points [29–32] and similar sets of quadrature
nodes [33] lead to less accurate quadrature results that still may be
useful. Rational functions [34] or sines and cosines [35] can also be
considered as basis functions. Discontinuous Galerkin methods [36–
38] allow for the use of standard high-order elements. Since the
mass matrix is local, it is readily inverted. The price paid is the
additional cost of fluxes across the element boundaries. If many source
terms need to be considered for the same velocity model, a situation
that is common in seismic exploration, a direct sparse-matrix solver
for standard higher-order triangular elements will generally be more
efficient. The cost of forming the sparse-matrix decomposition is then
offset by its inexpensive reuse for multiple source terms.

Applications with mass-lumped finite elements can be found in,
for instance, [4, 5, 13, 15, 16, 39].

REFERENCES

1. Fried, I. and D. S. Malkus, “Finite element mass matrix
lumping by numerical integration with no convergence rate loss,”
International Journal of Solids and Structures, Vol. 11, No. 4,
461–466, 1975.
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