Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-22
A Simulation Study of Flaw Detection for Rail Sections Based on High Frequency Magnetic Induction Sensing Using the Boundary Element Method
By
Progress In Electromagnetics Research, Vol. 141, 309-325, 2013
Abstract
Damage on rail increasingly originates from the surface of the rail as a result of for example rolling contact fatigue (RCF). This is a major concern for track operators, who operate test regimes for flaw detection and monitoring. The paper aims to assess the feasibility of applying electromagnetic (EM) simulation techniques to high frequency magnetic induction sensing of flaws in a section of rail head using the Boundary element method (BEM). When the driving frequency is significantly high (~MHz), the rail with high conductivity can be treated as perfect electric conductors (PEC) with negligible errors. In this scenario, BEM based on scalar potential and integral formulations becomes an effective way to analyze this kind of scattering problems since meshes are only required on the surface of the object. A simple high frequency magnetic induction sensing system was chosen to inspect the surface flaw of the rail. Different kinds of flaws were tested with different sensor configurations. The simulations were carried out using an algorithm the authors have developed in MATLAB. The paper provides new insights into the application of magnetic induction sensing technique using BEM in non-destructive testing. Based on the simulation and mathematical analysis, hardware system can be built to verify the proposed detection strategy.
Citation
Qian Zhao, Jianna Hao, and Wuliang Yin, "A Simulation Study of Flaw Detection for Rail Sections Based on High Frequency Magnetic Induction Sensing Using the Boundary Element Method," Progress In Electromagnetics Research, Vol. 141, 309-325, 2013.
doi:10.2528/PIER13042702
References

1. Li, Q. Y. and S. W. Ren, "A real-time visual inspection system for discrete surface defects of rail heads," IEEE Transactions on Instrumentation and Measurement, Vol. 61, 2189-2199, 2012.
doi:10.1109/TIM.2012.2184959

2. Rowshandel, H., G. L. Nicholson, C. L. Davis, and C. Roberts, "A robotic system for non-destructive evaluation of RCF cracks in rails using an ACFM sensor," 5th IET, 29-30, 2011.

3. Papaelias, M., C. Roberts, and C. L. Davis, "A review on non-destructive evaluation of rails: State-of-the-art and future development," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 222, 367-384, 2008.
doi:10.1243/09544097JRRT209

4. Clark, R., S. Singh, and C. Haist, "Ultrasonic characterisation of defects in rails," Insight, Vol. 44, 341-347, 2002.

5. Edwards, R., S. Dixon, and X. Jian, "Characterisation of defects in the railhead using ultrasonic surface waves," NDT & E. Int., Vol. 39, 468-475, 2006.
doi:10.1016/j.ndteint.2006.01.005

6. Cacciola, M., F. C. Morabito, D. Polimeni, and M. Versaci, "Fuzzy characterization of flawed metallic plates with eddy current tests," Progress In Electromagnetics Research, Vol. 72, 241-252, 2007.
doi:10.2528/PIER07031301

7. Watson, S., R. J. Williams, W. A. Gough, and H. Griffiths, "A magnetic induction tomography system for samples with conductivities less than 10 Sm-1," Measurement Science & Technology, Vol. 19, 045501, 2008.
doi:10.1088/0957-0233/19/4/045501

8. Yin, W. L. and A. J. Peyton, "Simultaneous measurements of thickness and distance of a thin metal plate with an electromagnetic sensor using a simplified model," IEEE Transactions on Instrumentation and Measurement, Vol. 53, 1335-1338, 2004.
doi:10.1109/TIM.2004.830585

9. Yin, W. L., A. J. Peyton, G. Zysko, and R. Denno, "Simultaneous noncontact measurement of water-level and conductivity," IEEE Transactions on Instrumentation and Measurement, Vol. 57, 2665-2669, 2008.
doi:10.1109/TIM.2008.926054

10. Ma, L., H.-Y. Wei, and M. Soleimani, "Planar magnetic induction tomography for 3D near subsurface imaging," Progress In Electromagnetics Research, Vol. 138, 65-82, 2013.

11. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

12. Wei, H.-Y. and M. Soleimani, "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012.

13. Ma, X., A. J. Peyton, S. R. Higson, A. Lyons, and S. J. Dickinson, "Hardware and software design for an electromagnetic electro-magnetic induction tomography (EMT) system for high contrast metal process applications," Measurement Science & Technology, Vol. 17, 111-118, 2006.
doi:10.1088/0957-0233/17/1/018

14. Griffiths, H., "Magnetic induction tomography," Measurement Science & Technology, Vol. 12, 1126-1131, 2001.
doi:10.1088/0957-0233/12/8/319

15. Wei, H.-Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress In Electromagnetics Research, Vol. 131, 99-115, 2012.

16. Wu, K. L., G. Y. Delisle, D. G. Fang, and M. Lecours, "Coupled finite element and boundary element methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 02, 113-132, 1990.

17. Liao, S. and R. J. Vernon, "On the image approximation for electromagnetic wave propagation and PEC scattering in cylindrical harmonics," Progress In Electromagnetics Research, Vol. 66, 65-88, 2006.
doi:10.2528/PIER06083002

18. Sun, K. L., K. O'Neill, F. Shubitidze, S. A. Haider, and K. D. Paulsen, "Simulation of electromagnetic induction scattering from targets with negligible to moderate penetration by primary fields," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 910-927, 2002.
doi:10.1109/TGRS.2002.1006372

19. Pham, M. H. and A. J. Peyton, "A model for the forward problem in magnetic induction tomography using boundary integral equations," IEEE Transactions on Magnetics, Vol. 44, 2262-2267, 2008.
doi:10.1109/TMAG.2008.2003142

20. Morrison, J. A., "Integral equations for electromagnetic scattering by perfect conductors with two-dimensional geometry," Bell Syst. Tech. J., Vol. 58, 409-425, 1979.
doi:10.1002/j.1538-7305.1979.tb02226.x

21. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Transactions on Antennas and Propagation, Vol. 41, 1448-1455, 1993.
doi:10.1109/8.247786

22. Graglia, R. D., "Static and dynamic potential integrals for linearly varying source distributions in two- and three-dimensional problems," IEEE Transactions on Antennas and Propagation, Vol. 35, 662-669, 1987.
doi:10.1109/TAP.1987.1144160

23. Zhang, Z. M. and Y. R. Den, "A new method using Biot-Savart law to derive magnetic scalar potential notation," Journal of Chongqing Institute of Civil Engineering and Architecture, Vol. 4, 99-103, 1985.