1. American Cancer Society, , Cancer facts and figures 2007, Online, 2007, http://www.cancer.org.
2. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108
3. Wang, X., D. R. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 10, 2782-2791, 2012.
doi:10.1109/TBME.2012.2210218
4. Guo, B., Y. W. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," PIERS Online, Vol. 1, No. 3, 350-353, 2005.
5. Liao, K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106
6. Qi, Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205
7. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307
8. Giamalaki, M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011.
9. Zhao, Z. Q., J. Song, X. Z. Zhu, J. G. Wang, J. N. Wu, Y. L. Liu, Z. P. Nie, and Q. H. Liu, "System development of microwave induced thermo-acoustic tomography and experiments on breast tumor," Progress In Electromagnetics Research, Vol. 134, 323-336, 2013.
10. Zhu, X. Z., Z. Q. Zhao, J. G. Wang, J. Song, and Q.-H. Liu, "Microwave induced thermal acoustic tomography for breast tumor based on compressive sensing ," IEEE Transactions on Biomedical Engineering, Vol. 60, No. 5, 1298-1307, May 2013.
doi:10.1109/TBME.2012.2233737
11. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermo-acoustic CT at 434MHz --- Feasibility study," Radiology, Vol. 216, No. 1, 279-283, Jul. 2000.
12. Geng, K. and L. V. Wang, "Scanning microwave-induced thermo-acoustic tomography: Signal, resolution, and contrast ," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409
13. Nie, L., D. Xing, Q. Zhou, D. Yang, and H. Guo, "Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging," Med. Phys., Vol. 35, No. 9, 4026-4032, Sep. 2008.
doi:10.1118/1.2966345
14. Xu, M. and L. V.Wang, "Time-domain reconstruction for thermo-acoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, No. 7, 814-822, Jul. 2002.
15. Razanksy, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, No. 9, 4602-4607, 2010.
doi:10.1118/1.3467756
16. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Phys. Med. Biol., Vol. 56, No. 11, 3433-3444, 2011.
doi:10.1088/0031-9155/56/11/016
17. Bauer, D., X. Wang, J. Vollin, H. Xin, and R. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett., Vol. 101, 033705, 2012.
doi:10.1063/1.4737414
18. University of Wisconsin Computational Electromagnetics, 2007, Available: http://uwcem.ece.wisc.edu/home.htm.
19. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112
20. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103
21. Treeby, B. E. and B. T. Cox, "k-wave: MATLAB toolbox for the simulation and reconstruction of photo-acoustic wave fields," Journal of Biomedical Optics, Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308
22. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, No. 4, 1044-1055, 1998.
doi:10.1109/58.710587
23. Cox, B. T., J. G. Laufer, K. P. Köstli, and P. C. Beard, "Experimental validation of photoacoustic k-space propagation models," Photons Plus Ultrasound: Imaging and Sensing 2004, Proc. SPIE 5320 , 238-248, 2004.
doi:10.1117/12.531178
24. Weiwad, W., A. Heining, L. Goetz, et al. "Direct measurement of sound velocity in various specimens of breast tissue," Invest. Radiol., Vol. 35, 721-726, 2000.
doi:10.1097/00004424-200012000-00005
25. Mast, T. D., "Empirical relationship between acoustic parameters in human soft tissue ," Acoust. Res. Lett., Vol. 1, 37-42, 2009.
26. Fink, M. and C. Prada, "Acoustic time-reversal mirrors," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
doi:10.1088/0266-5611/17/1/201
27. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
doi:10.1103/PhysRevLett.92.033902
28. Chen, G. P. and Z. Q. Zhao, "Ultrasound tomography-guide TRM technique for breast tumor detecting in MITAT system," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1459-1471, 2010.
doi:10.1163/156939310792149650
29. Lazebnik, M., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002