Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-21
Dual-Band Differential Filter Using Broadband Common-Mode Rejection Artificial Transmission Line
By
Progress In Electromagnetics Research, Vol. 139, 779-797, 2013
Abstract
A new balanced dual-band bandpass filter with strong commonmode rejection is presented in this paper. Common-mode rejection is provided by a section of a periodic microstrip differential line that behaves as a low-pass filter under common-mode operation. In contrast, the differential line exhibits very good all-pass behavior under differential mode operation. This structure is combined with a differential dual-band bandpass filter based on embedded resonators. Simulations and experiments confirm that the combined structure has good common-mode rejection within the passbands of the dual-band differential filter.
Citation
Armando Fernandez-Prieto, Jesus Martel-Villagran, Francisco Medina, Francisco Mesa, Shilong Qian, Jia-Sheng Hong, Jordi Naqui, and Ferran Martin, "Dual-Band Differential Filter Using Broadband Common-Mode Rejection Artificial Transmission Line," Progress In Electromagnetics Research, Vol. 139, 779-797, 2013.
doi:10.2528/PIER13041405
References

1. Wu, C.-H., C.-H.Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 287-295, Feb. 2007.
doi:10.1109/TMTT.2006.889147

2. Wu, C.-H., C.-H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 507-509, Jul. 2007.
doi:10.1109/LMWC.2007.899311

3. Wu, C.-H., C.-H. Wang, and C. H. Chen, "Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1756-1763, Aug. 2007.
doi:10.1109/TMTT.2007.901609

4. Wang, X.-H., Q. Xue, and W.-W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 471-473, Aug. 2010.
doi:10.1109/LMWC.2010.2050869

5. Shi, J. and Q. Xue, "Novel balanced dual-band bandpass filter using coupled stepped impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 19-21, Jan. 2010.
doi:10.1109/LMWC.2009.2035954

6. Wu, S.-M., C.-T. Kuo, and C.-H. Chen, "Very compact full differential bandpass filter with transformer integrated using integrated passive device technology," Progress In Electromagnetic Research, Vol. 113, 251-267, 2011.

7. Wu, S. M., C.-T. Kuo, P.-Y. Lyu, Y.-L. Shen, and C.-I. Chien, "Miniaturization design of full differential bandpass filter with coupled resonators using embedded passive device technology," Progress In Electromagnetic Research, Vol. 121, 365-379, 2011.
doi:10.2528/PIER11091404

8. Lin, S.-C. and C.-Y. Yeh, "Stopband-extended balanced filters using both λ/4 and λ/2 SIRS with common-mode suppression and improved passband selectivity," Progress In Electromagnetic Research, Vol. 128, 215-228, 2012.

9. Yanagisawa, K., F. Zhang, T. Sato, K. Yamasawa, and Y. Miura, "A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil," IEEE Trans. Magn., Vol. 41, No. 10, 3571-3573, Oct. 2005.
doi:10.1109/TMAG.2005.855189

10. Deng, J. and K. Y. See, "In-circuit characterization of common-mode chokes," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 451-454, May 2007.
doi:10.1109/TEMC.2007.897155

11. Tseng, B.-C. and L.-K. Wu, "Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic," IEEE Trans. Electromagn. Compat., Vol. 46, No. 4, 471-579, Nov. 2004.

12. Liu, W.-T., C.-H. Tsai, T.-W. Han, and T.-L. Wu, "An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 4, 248-250, Apr. 2008.
doi:10.1109/LMWC.2008.918883

13. Wu, S.-J., C.-H. Tsai, T.-L. Wu, and T. Itoh, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, 848-855, Apr. 2009.
doi:10.1109/TMTT.2009.2015087

14. Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, "Common mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3023-3034, Oct. 2012.
doi:10.1109/TMTT.2012.2209675

15. Fernandez-Prieto, A., J. Martel, J. S. Hong, F. Medina, S. Qian, and F. Mesa, "Differential transmission line for common-mode suppression using double side MIC technology," Proc. of the 41st European Microwave Conference (EuMC), 631-634, Manchester, England, UK, Oct. 10-13, 2011.

16. Ma, D.-C., Z.-Y. Xiao, L.-L. Xiang, X.-H. Wu, C.-Y. Huang, and X. Kou, "Compact dual-band bandpass filter using foldd SIR with two stubs," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

17. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, " Dual-wideband bandpass filters with extended stopband on coupled-line and coupled three-line resonators," Progress In Electromagnetic Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

18. Chaudhary, G., Y. Jeong, K. Kim, and D. Ahn, "Design of dual-band bandpass filters with controllable bandwidths using new mapping function," Progress In Electromagnetic Research, Vol. 124, 17-34, 2012.
doi:10.2528/PIER11111407

19. Wang, M., X. Li, and H. Wang, "Dual-band and harmonic suppression of filter designs based on asymmetric half-wavelength resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2192-2201, 2012.
doi:10.1080/09205071.2012.729499

20. Wang, J., H. Ning, Q. Xiong, M. Li, and L. Mao, "A novel miniaturized dual-band bandstop filter using dual-plane defected structures," Progress In Electromagnetic Research, Vol. 134, 397-417, 2013.

21. Karpuz, C., A. K. Gorur, A. N. Basmaci, and A. Ozek, "Design and analysis of a compact dual-mode dual-band microstrip bandpass filter," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 180-190, 2013.
doi:10.1080/09205071.2013.743209

22. Zhang, L.-Z., L. Zhou, and W. Jiang, "A compact dual-band coupler with arbitrary power dividing ratio using broadside-coupled microstrip," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 140-148, 2013.
doi:10.1080/09205071.2013.740784

23. Yang, C.-F., Y.-C. Chen, C.-Y. Kung, J.-J. Lin, and T.-P. Sun, "Design and fabrication of a compact quad-band bandpass filter using two different parallel positioned resonators," Progress In Electromagnetics Research, Vol. 115, 159-172, 2011.

24. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, Wimax and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetic Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

25. Li, C.-Y., J.-X. Chen, H. Tang, L.-H. Zhou, J. Shi, and Z.-H. Bao, "Tri-band bandpass filter with wide stop-band using stub-loaded triple-mode resonator," Journal of Electromagnetic Waves and Applications, Vol. 27, 439-447, 2013.
doi:10.1080/09205071.2013.748638

26. Lee, C.-H., C.-I. G. Hsu, H.-H. Chen, and Y.-S. Lin, "Balanced single- and dual-band BPFS using ring resonators," Progress In Electromagnetic Research, Vol. 116, 333-346, 2011.

27. Chen, C.-Y., C.-Y. Hsu, and H.-R. Chuang, "Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 12, 669-671, Dec. 2006.
doi:10.1109/LMWC.2006.885621

28. Tsai, C.-H. and T.-L. Wu, "A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 195-202, Jan. 2010.
doi:10.1109/TMTT.2009.2036413

29. Martel, J. and F. Medina, "A suitable integral equation for the quasi-TEM analysis of hybrid strip/slot-like structures," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 224-227, Jan. 2001.
doi:10.1109/22.900016

30. Martel, J., R. R. Boix, and M. Horno, "Static analysis of microstrip discontinuities using the excess charge density in the spectral domain," IEEE Trans. on Microwave Theory Tech., Vol. 39, No. 9, 1623-1631, Sep. 1991.
doi:10.1109/22.83839

31. Pozar, D. M., Microwve Engineering, 3rd Edition, Wiley & Sons, 2005.

32. Islam, R., M. Zedler, and G. V. Eleftheriades, "Modal analysis and wave propagation in finite 2D transmission-line metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 59, 1562-1572, May 2011.

33. Freire, M. J., F. Mesa, and M. Horno, "Excitation of complex and backward modes on shielded lossless printed lines," IEEE Trans. Microw. Theory Tech., Vol. 47, 1098-1105, Jul. 1999.

34. Shi, X. and Q. Xue, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 970-977, Apr. 2010.
doi:10.1109/TMTT.2010.2042839

35. Shi, X. and Q. Xue, "Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 8, 2204-2212, Aug. 2010.
doi:10.1109/TMTT.2010.2052959

36. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, 2nd Edition, Wiley, New York, 2011.