1. Cusack, M. A., P. R. Briddon, and M. Jaros, "Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots," Phys. Rev. B, 4047-4050, 1997.
doi:10.1103/PhysRevB.56.4047
2. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(1 1 1) and their interaction with water," Surf. Sci., Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079
3. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.
doi:10.1103/PhysRevB.84.033401
4. Borca, B., S. Barja, M. Garnica, M. Minniti, A. Politano, J. M. Rodriguez-Garcia, J. J. Hinarejos, D. Farias, A. L. Vazquez de Parga, and , "Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001)," New J. Phys., Vol. 12, 093018, 2010.
doi:10.1088/1367-2630/12/9/093018
5. Ariga, K., A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, "Nanoarchitectonics for mesoporous materials," Bull. Chem. Soc. Jpn., Vol. 85, 1-32, 2012.
doi:10.1246/bcsj.20110162
6. Xuan, W., C. Zhu, Y. Liu, and Y. Cui, "Mesoporous metal-organic framework materials," Chem. Soc. Rev., Vol. 41, 1677-1695, 2012.
doi:10.1039/c1cs15196g
7. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486
8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059
9. Joannopoulus, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Moding The Flow of Light, Princeton University Press, 1995.
10. Sakoda, K., Optical Properties of Photonic Crystals, Spinger, 2001.
doi:10.1007/978-3-662-14324-7
11. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796
12. Liu, Y. and X. Zhang, "Metamaterials: A new frontier of science and technology," Chem. Soc. Rev., Vol. 40, 2494-2507, 2011.
doi:10.1039/c0cs00184h
13. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B , Vol. 58, R10096-R10099, 1998.
doi:10.1103/PhysRevB.58.R10096
14. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett., Vol. 74, 7-9, 1999.
doi:10.1063/1.123116
15. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, 131-136, 2012.
doi:10.1007/s11468-011-9285-5
16. Deubel, M., G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater., Vol. 3, 444-447, 2004.
doi:10.1038/nmat1155
17. Chan, C. T., Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B, Vol. 51, 16635, 1995.
doi:10.1103/PhysRevB.51.16635
18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Inc., 2005.
19. Pendry, J. B., "Photonic band structures," J. Mod. Opt., , Vol. 41, 209-229, 1994.
doi:10.1080/09500349414550281
20. Stefanou, N., V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coeffcients," Comp. Phys. Comm., Vol. 113, 49-77, 1998.
doi:10.1016/S0010-4655(98)00060-5
21. Li, Z. Y. and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
doi:10.1103/PhysRevE.67.046607
22. Deinega, A., S. Belousov, and I. Valuev, "Hybrid transfer-matrix FDTD method for layered periodic structures," Opt. Lett., Vol. 34, 860-862, 2009.
doi:10.1364/OL.34.000860
23. Hsue, Y.-C. and T.-J. Yang, "Applying a modified plane-wave expansion method to the calculations of transmissivity and reflectivity of a semi-infinite photonic crystal," Phys. Rev. E, Vol. 70, 016706, 2004.
doi:10.1103/PhysRevE.70.016706
24. Shi, S., C. Chen, and D. W. Prather, "Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs," Appl. Phys. Lett., Vol. 86, 043104, 2005.
doi:10.1063/1.1855425
25. Gu, B.-Y., L.-M. Zhao, and Y.-C. Hsue, "Applications of the expanded basis method to study the properties of photonic crystals with frequency-dependent dielectric functions and dielectric losses," Physics Letters A, Vol. 355, 134-141, 2006.
doi:10.1016/j.physleta.2006.02.011
26. Yuan, J. and Y. Y. Lu, "Photonic bandgap calculations with Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A, Vol. 23, 3217-3222, 2006.
doi:10.1364/JOSAA.23.003217
27. Yuan, J., Y. Y. Lu, and X. Antoine, "Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps," J. Comp. Phys., Vol. 227, 4617-4629, 2008.
doi:10.1016/j.jcp.2008.01.014
28. Ho, K.-M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152
29. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Exp., Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173
30. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696-10705, 2000.
doi:10.1103/PhysRevB.62.10696
31. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.
doi:10.1103/PhysRevB.72.165112
32. Jiang, W., R. T. Chen, and X. Lu, "Theory of light refraction at the surface of a photonic crystal," Phys. Rev. B, Vol. 71, 245115, 2005.
doi:10.1103/PhysRevB.71.245115
33. Santamara, , F. G., J. F. G. Lopez, P. V. Braun, and C. Lopez, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B, Vol. 71, 195112, 2005.
doi:10.1103/PhysRevB.71.195112
34. Serebryannikov, A. E., T. Magath, and K. Schuenemann, "Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface," Phys. Rev. E, Vol. 74, 066607, 2006.
doi:10.1103/PhysRevE.74.066607
35. Li, Z. Y., L. L. Lin, and Z. Q. Zhang, "Spontaneous emission from photonic crystals: Full vectorial calculations," Phys. Rev. Lett., Vol. 84, 4341-4344, 2000.
doi:10.1103/PhysRevLett.84.4341
36. Zhou, Y. S., X. H. Wang, B. Y. Gu, and F. H. Wang, "Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals," Phys. Rev. E, Vol. 72, 017601, 2005.
doi:10.1103/PhysRevE.72.017601
37. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, 16835-16844, 1994.
doi:10.1103/PhysRevB.50.16835
38. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, 7427-7444, 1997.
doi:10.1103/PhysRevB.55.7427
39. Kuzmiak, V., A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal," Phys. Rev. B, Vol. 55, 4298-4311, 1997.
doi:10.1103/PhysRevB.55.4298
40. Zhang, W., A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B, Vol. 54, 10280-10283, 1996.
doi:10.1103/PhysRevB.54.10280
41. Lee, W. M., P. M. Hui, and D. Stroud, "Propagating photonic modes below the gap in a superconducting composite," Phys. Rev. B, Vol. 51, 8634-8637, 1995.
doi:10.1103/PhysRevB.51.8634
42. Raman, A. and S. Fan, "Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem," Phys. Rev. Lett., Vol. 104, 087401, 2010.
doi:10.1103/PhysRevLett.104.087401
43. Toader, O. and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E, Vol. 70, 046605, 2004.
doi:10.1103/PhysRevE.70.046605
44. Inui, T., Y. Tanabe, and Y. Onodera, Group Theory and Its Application in Physics,, Springer, 1996.
45. Alagappan, G., X. W. Sun, and H. D. Sun, "Symmetries of the eigenstates in an anisotropic photonic crystal," Phys. Rev. B , Vol. 77, 195117, 2008.
doi:10.1103/PhysRevB.77.195117
46. Lopez-Tejeira, F., T. Ochiai, K. Sakoda, and J. Sanchez-Dehesa, "Symmetry characterization of eigenstates in opal-based photonic crystals ," Phys. Rev. B, Vol. 65, 195110, 2002.
doi:10.1103/PhysRevB.65.195110
47. Sakoda, K., N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, "Photonic bands of metallic systems. I. Principle of calculation and accuracy ," Phys. Rev. B, Vol. 64, 045116, 2001.
doi:10.1103/PhysRevB.64.045116
48. Gohberg, I., P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, 1982.
49. Yariv, A., "Introduction to Theory and Applications Mechanics," John Wiley & Sons Inc., 1982.
50. Kittel, C., Introduction to Solid State Physics, 7th Ed., Wiley, 1995.
51. Halevi, P. and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett., Vol. 85, 1875, 2000.
doi:10.1103/PhysRevLett.85.1875
52. Weber, M. J., Handbook of Optical Materials, CRC Press, 2002.
doi:10.1201/9781420050196
53. Deinega, A. and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett., Vol. 37, 112-114, 2012..
doi:10.1364/OL.37.000112
54. Ribbing, C. G., H. HogstrÄom, and A. Rung, "Studies of polaritonic gaps in photonic crystals," Appl. Opt., Vol. 45, 1575-1582, 2006.
doi:10.1364/AO.45.001575
55. Foteinopoulou, S., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials," Phys. Rev. B, Vol. 84, 035128, 2011.
doi:10.1103/PhysRevB.84.035128