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Abstract—We show that the optical modes of a periodic nanostruc-
ture with frequency dependent dielectric constant (i.e., a dispersive
optical nanostructure), in general can be written as an ordinary eigen-
value problem of a “dielectric function operator”, for each distinct sym-
metry representation of the periodic nanostructure. For a frequency
dependence in the form of polynomial rational function, the problem
translates to a polynomial eigenvalue equation in the frequency of the
mode. The resulting problem can be solved using the basis functions
of a dielectric backbone structure, which has a frequency independent
dielectric constant. Rapid convergence is achieved when the basis func-
tions are selected to be the modes of a dielectric backbone structure
that minimizes the frequency perturbation of the dielectric function
of the optical nanostructure. In particular, using a two dimensional
photonic crystal constructed with a polar crystal as an example, we
demonstrate that, remarkable simple cubic equations are sufficient to
obtain accurate descriptions of eigenfrequencies.

1. INTRODUCTION

Self-assembled (quantum dots [1, 2], graphene nanodomes [3, 4],
or metal-organics frameworks [5, 6]) and artificial nanostructured
materials (photonic crystals (PCs) [7–10] and metamaterials [11, 12])
have been subject of a great interest in recent years due to their
properties to manage the light propagation. Their usage brings
new perspectives to optoelectronics [13], laser applications [14],
plasmonics [15], telecommunication techniques [16], and other practical
areas. Efficient computational methods are required to model optical
properties of periodic nanostructured materials and to optimize their
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geometry. Eigenmode decomposition is very popular tool to analyze
electromagnetic fields arbitrary periodic nanostructures.

Eigenmode decomposition can be carried out using direct or
indirect methods. In the indirect methods, the frequency of the optical
mode is not a part of the eigenvalue of the mathematical formulation,
or involve secondary steps to extract the mode frequencies. In the
direct method, the problem is formulated such that the frequencies
and the modes of the optical system can be directly extracted from
the eigenvalues and the eigenmodes of the mathematical formulation.

Examples of indirect methods include finite difference time domain
(FDTD) [17, 18], transfer matrix [19–21] (TM), a combination of
FDTD and TM methods [22], and an indirect formulation of plane
wave expansion (PWE) method [23–27]. In the indirect PWE, one
formulate wavevector components of light to be eigenvalues for a given
frequency. The indirect methods are in general time consuming, and
often involves scanning of the entire frequency spectrum to locate the
eigenmodes of the optical system.

The most popular and direct eigenmode decomposition method,
especially in the case of photonic crystals [PCs], is a direct
formulation of PWE, where frequency and the modes appear naturally
as eigenvalues and eigenmodes of the optical system. Direct
formulation of PWE has been used in computations of photonic
band gaps [10, 28, 29], equal frequency surfaces for the theory of
light refraction and diffraction [30–33], Bragg transmittance and
reflectance [10, 34], and spontaneous emission in a PC [35, 36].
Conventionally, direct formulation of PWE handles only nondispersive
materials. Few extensions have been made into direct PWE to
accommodate the dispersive materials. These include direct PWE
formulations for PCs constructed with lossless metals [37], metals
with dissipations [38], polar crystals [39, 40], and superconducting
composite [41]. Direct eigenvalue formulations also have been carried
using the methods of auxiliary field for metamaterials and PCs made
of materials with Lorentzian form of dielectric functions [42].

In this paper, we present a new direct approach for eigenmode
decomposition in a dispersive periodic nanostructure (DPN). A DPN
has frequency and position dependent dielectric constant. We showed
that the eigenmodes and the eigenfrequencies of the DPNs, in general
can be written as an eigenvalue problem of a newly defined “dielectric
function operator”, for each distinct symmetry representation of the
eigenmode. This eigenvalue problem can be solved graphically, or
upon specific polynomial (or polynomial rational) form of a dielectric
function, can be transformed to a polynomial eigenvalue problem in
the frequency of the optical mode. It is worth to mention, that in
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principle one can model the dielectric functions of any given material
by polynomial rational functions or at least by fitting, and therefore
the method is suitable for variety of dielectric functions with varying
frequency dependence.

The polynomial eigenvalue problem can be solved using a suitable
set of basis functions. In the case of PCs, the set basis functions can be
set of plane waves or set of Bloch modes of a PC constructed with non-
dispersive materials. The latter selection of the basis functions often
leads to a rapid convergence and gives a semi-analytical description
for the eigenfrequencies and eigenmodes of the DPN. Specifically we
showed that the roots of a simple cubic equation accurately yield the
eigenfrequencies of a 2D PC constructed with polar crystals. The
nature of the analytical roots of the cubic equation explains the
appearance of dispersionless bands in the photonic band structure of
2D PCs with polar crystals [39, 40, 43]. The capability of producing
semi-analytical results is a feature that is missing in the previous
formulations which always involve heavy numerical calculations.

2. THEORETICAL FORMALISM

The modes of a DPN is described by a three dimensional time
independent wave equation,

∇×∇×E(r)− ω2

c2
ε(r, ω)E(r) = 0, (1)

where r, ω, E(r), and c are position vector, light frequency, electric
field, and the speed of light respectively. Let’s write the dielectric
constant of the DPN as ε(r, ω) = εbb(r) + χ(r, ω), where εbb(r) and
χ(r, ω) are the frequency independent and the frequency dependent
portion of the dielectric constant, respectively. The dielectric geometry
described εbb(r) is defined as the dielectric backbone structure. Note
that the dielectric backbone can be either a non-dispersive homogenous
medium, vacuum or complex nanostructure (such as a PC) constructed
with frequency independent dielectric materials. In order to solve
Equation (1), let’s expand the electric field using a set of basis
functions,

E(r) =
∑
m

fmφm(r), (2)

where φm(r), is the basis function of label — m. We can take the basis
functions as solutions to Equation (1) when χ(r, ω) = 0 (i.e., the modes
of the dielectric backbone structure). The basis function satisfies,

∇×∇× φm(r)− ω2
m

c2
εbb(r)φm(r) = 0, (3)
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where ωm represents the frequency of the m-th basis function. The
basis functions also satisfy the orthogonality relationship,

1
V

∫

unit cell

φ∗n(r)εbb(r)φm(r)d3r = δnm, (4)

where V is the volume of the unit cell.
Substituting Equation (2) into Equation (1) and using Equa-

tion (3), we have
∑
m

fm[ω
2
m−ω2

c2
εbb(r)φm − ω2

c2
χ(r, ω)φm] = 0. Multi-

plying this equation with φ∗n(r), and applying the orthogonality rela-
tionship in Equation (4), we obtain,

(
ω2

n − ω2
)
fn =

ω2

V

∑
m

fm

∫

unit cell

φ∗n(r)χ(r, ω)φm(r)d3r. (5)

In this paper, we assume the optical structure has only one dispersive
material with negligible loss. This is assumption is consistent with the
previous studies of dispersive PCs [37–43], where only one dispersive
material with negligible loss is considered. With these assumptions,
χ(r, ω) in Equation (5) can be written as χ(r, ω) = XF + X(ω)θ(r),
where XF is a real constant value, X(ω) is a real function of ω, and
θ(r) is a dimensionless periodic function of r describing the position of
the dispersive material. The constant XF is added to the dielectric
function so that one can have additional freedom in choosing the
backbone structure. The function θ(r) equals to 1 if r pointing towards
the position of dispersive material and zero otherwise. Introducing
Fn = ωnfn, we can write Equation (5) in a symmetrized form as

1
ω2

Fn =
∑
m

1
ωnωm

[δnm + XF Jnm + X(ω)θnm] Fm, (6)

where Jnm = 1
V

∫
unit cell

φ∗n(r)φm(r)d3r and θnm = 1
V

∫
unit cell

φ∗n(r)θ(r)

φm(r)d3r. The index m in Equation (6) in principle runs over
all of the basis functions of the dielectric backbone, and this is
an extreme waste of computational efforts. We will use symmetry
arguments to simplify Equation (6). Firstly, note that, Equation (3)
can be written in the operator form as Hbbφm(r) = (ω2

m/c2)φm(r),
where Hbb = [1/εbb(r)]∇ × ∇×. The set of symmetry elements,
G, that keep Hbb invariant [i.e., GHbbG−1 = Hbb] forms a group,
G(Hbb), under the group theory [44]. The basis function is then
can be identified with an additional symmetry label given by the
irreducible representation (IR) of the group G(Hbb). Denoting small
Greek letters for the labels of IRs, the indices n and m now can
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be replaced with a pair of labels (n, α) and (m, β), respectively.
If the symmetry of χ(r, ω) is the same as the symmetry of εbb(r)
[i.e., the G(H) = G(Hbb), where H = {1/ε(r, ω)}∇ × ∇×], then the
term θ(n,α)(m,β) = 1

V

∫
unit cell

φ∗(n,α)(r)θ(r)φ(m,β)(r)d3r in Equation (6),

can be written as θ(n,α)(m,β) = 1
V

∫
unit cell

ψ∗
(n,α)(r)ψ(m,β)(r)d3r,

where ψ(n,α)(r) =
√

θ(r)φ(n,α)(r) is the function with the
same symmetry as φ(n,α)(r). Using the orthogonality of the
basis functions of different IR, one can show that θ(n,α)(m,β) =
1
V

∫
unit cell

ψ∗
(n,α)(r)ψ(m,β)(r)d3r = δαβθ(n,α)(m,α) and J(n,α)(m,β) =

1
V

∫
unit cell

φ∗(n,α)(r)φ(m,β)(r)d3r = δαβJ(n,α)(m,α). Consequently,

Equation (6) can be decoupled to different sets of equations,
∑
m

1
ω(n,α)(n,α)ω(m,α)(m,α)

[δ(n,α)(m,α) + XF J(n,α)(m,α) + X(ω)θ(n,α)(m,α)]

F(m,α)(m,α) = (1/ω2)F(n,α)(n,α), which can be solved independently for
each α. Therefore, we need to keep only the basis functions of the same
IR in Equation (6). As we will illustrate later, this will significantly
reduce the matrix size and the computational time of the eigenproblem.

For PCs, there are two different kinds of symmetries, the
translation symmetry and the point group symmetry. In the group
theoretical terms, we say that G(H) is a direct product group between a
translation group and a point group. These groups have their own sets
of IRs. For translation group, each wavevectors in the first Brillouin
Zone (BZ) constitute to a different IR [44]. Therefore, the modes of
the PC with the same IR will have modes with the same wavevector
and the same IR of the point group. The IR of the point groups are
usually identified using the Mulliken’s labels such as A1, A2, B1, B2

etc. [10, 44]. For a detail discussion on the symmetry representations
in PCs, see Refs. [10, 45–47].

Equation (6) can be written in a matrix form as Î(1/ω2)F =
[B̂ + X(ω)θ̂]F, where the elements of Î, B̂, θ̂ and F are δnm, [δnm +
XF Jnm]/(ωnωm), θnm/(ωnωm) and Fn, respectively. Rearranging this
equation, we arrive at a eigenvalue problem for each distinct symmetry,
α,

_

X(ω)F = X(ω)F, (7)

where
_

X(ω) = θ̂−1[(1/ω2)Î − B̂] is defined as a dielectric function
operator. Equation (7) represents an eigenvalue problem for the
dielectric function operator with X(ω) being the eigenvalue. A useful
orthogonality relationship between any two eigenvectors Fi and Fj
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of the nondegenerate eigenvalues, can be obtained by multiplying
Equation (7) with θ̂, and noting that the resulting problem is a
generalized symmetric eigenvalue problem. The resulting orthogonality
relationship is Fj · θ̂Fi = δij .

There are at least two ways to solve for ω from Equation (7).
In general, for all forms of X(ω), one can employ a graphical method.
In this method, we first graph the eigenvalues of the operator

_

X(ω),
En(ω), as a function of ω. The intersection between the curves En(ω)
and X(ω) produce the desired eigenfrequencies of the DPN. If X(ω)
is a polynomial rational function, then Equation (7) can be solved as
a polynomial eigenvalue problem. In this case, Equation (7) can be
written as 1

ω2D(ω)
{∑

r
ωrÂr}F = 0, where D(ω) is the denominator

of X(ω) and the matrix coefficients (Âr) are functions of B̂, θ̂, and
Î. Consequently, for a non-singular D(ω), we arrive at a polynomial
eigenvalue problem,

P̂ (ω)F = 0, (8)

where P̂ (ω) =
∑
n

ωrÂr. Equation (8) can be solved using the

standard techniques of polynomial eigenvalue problem. A thorough
study of the mathematical properties of the matrix polynomials and
the corresponding solution to the eigenvalue problems can be found in
Ref. [48].

In Table 1, we have tabulated the nonzero matrix coefficients of
P̂ (ω) for dielectric functions of a two-level quantum dot [49], polar
crystals [39, 43], and Drude-like materials. The Drude like materials
include metals [37, 38], semiconducting [51] and superconducting [41]
constitutes. Similar to previous studies [38, 39, 43], we have neglected
the imaginary part of the complex dielectric constant, for all cases
of X(ω) in Table 1. As we can see from the Table 1, for Drude
like materials, we have linear and quadratic polynomials in ω2, with
the absence and the presence of dissipation, respectively. For polar
crystals, P̂ are quadratic and cubic in ω2, with the absence and
presence the of dissipation, respectively. For quantum dots P̂ are
quartic in ω. It is also easy to show the matrix polynomials for
other forms of X(ω). In the case of a Sellmeier dispersion [52], we
have quadratic and cubic polynomials in ω2, when we keep one and
two dispersion terms in the Sellmeier equation, respectively. For the
case of silicon based devices, to model the entire response of bulk
crystalline silicon to light over the wavelength range from 300 to
1000 nm, recently a new effective polynomial rational form of X(ω)
is proposed in Ref. [53]. Using the proposed X(ω), it can be shown
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Table 1. Nonzero Âr for DPNs made of two level quantum dots,
polar crystals and Drude-like materials. Here g, ε, τ , ωT , and ωp are
constant values.

Model Nonzero Âr

Drude like
(no dissipation)

−εω2
p/ω2

Â2 = B̂

Â0 = −εω2
p θ̂ − Î

Drude like — with
dissipation (γ)

− εω2
p

ω2+γ2

Â4 = B̂

Â2 = γ2B̂ − εω2
p θ̂ − Î

Â0 = −γ2Î

Polar Crystals
(no dissipation)

εω2
T(

ω2
T−ω2

)

Â4 = B̂

Â2 = −ω2
T B̂ − εω2

T θ̂ − Î

Â0 = ω2
T Î

Polar Crystals — with
dissipation (γ)

εω2
T

(
ω2

T−ω2
)

(
ω2

T−ω2
)2

+γ2ω2

Â6 = B̂

Â4 = (γ2 − 2ω2
T )B̂ − εω2

T θ̂ − Î

Â2 = ω4
T B̂ + εω4

T θ̂ − (γ2 − 2ω2
T )Î

Â0 = −ω4
T Î

Two Level
Quantum Dots

g(ω−ω0)τ
1+[(ω−ω0)τ ]2

Â4 = τ2B̂;
Â3 = gτ θ̂ − 2ω0τ

2B̂;
Â2 =

(
1 + ω2

0τ
2
)
B̂ − gω0τ θ̂ − τ2Î ;

Â1 = 2ω0τ
2Î;

Â0 = −(
1 + ω2

0τ
2
)
Î

that the corresponding matrix polynomial for silicon is a 5th degree
polynomial in ω2.

If we assume the perturbation χ(r, ω) is small, then the off
diagonal elements of B̂, θ̂, and Î can be neglected, and the frequency
of the m-th mode can be obtained from the scalar polynomial,∑

r

ωrAr,mm = 0, (9)

where the scalar coefficients Ar,mm are function of diagonal elements
of B̂, θ̂, and Î. Also, in this case, the corresponding matrix operator,
_

X(ω) = θ̂−1[(1/ω2)Î − B̂] in Equation (7), reduces to a scalar operator,
θ−1
m [(1/ω2)−Bm], where θm and Bm are the diagonal elements of B̂

and θ̂, respectively. It is worth to note that one can always attempt to
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minimize the perturbation [i.e., χ(r, ω)] by selecting a an appropriate
dielectric backbone structure [recall that ε(r, ω) = εbb(r) + χ(r, ω)].

3. NUMERICAL EXAMPLE

For a purpose of illustration let’s concentrate our discussion for the
case of PCs constructed with frequency dependent dielectric materials.
If we assume the basis functions are those of an empty lattice with
εbb(r) = 1, then the basis functions are given by plane waves with
wavevectors k + G, where k and G are the Bloch and reciprocal
lattice vectors, respectively. With these basis functions, Equation (8)
accurately reproduces the generalized eigenvalue problem previously
derived for specialized cases of metallic [37], and polar [39] PCs.
Although, plane waves are the simplest form of the basis functions,
it takes large number of plane waves to give accurate results. The set
of basis functions of an empty lattice [εbb(r) = 1] is not the only choice
for the set of basis functions. In fact, for a rapid convergence one should
select the basis functions such that the corresponding εbb(r) minimizes
the perturbation, χ(r, ω). If we assume the PC is constructed with a
dispersive material of dielectric constant εd + X(ω) in a background
medium having a dielectric constant, εbackground, then the unit cell
is described by ε(r, ω) = εbackground + [εd − εbackground + X(ω)]θ(r).
The choice of εbb(r) that minimizes the perturbation, χ(r, ω) would
be εbb(r) = εbackground(r) + [εd − εbackground]θ(r). Therefore, the
basis functions that minimizes the perturbation are the modes of a
PC constructed with frequency independent dielectric constants of
εbackground and εd. As we will show in the numerical example, with such
choice of εbb(r) and the corresponding set of basis functions, the scalar
version of Equation (7) and the scalar polynomial in Equation (8)
provide excellent approximations to the original matrix polynomial.
We will also illustrate the significance role played by the basis function
symmetry in the convergence of the calculation.

For a numerical illustration let’s consider the E-polarization
[electric field perpendicular to the periodic plane] of a 2D PC made of
frequency dispersive circular rods in a frequency independent dielectric
matrix. We will consider the rods to be made of polar crystals.
Previously, polar crystals have been used in the investigations for
the enhancement of the photonic band gap and investigation of co-
existing polaritonic band gap in PCs [39, 40, 54, 55]. In Ref. [55], 2D
PCs made of polar crystals are proposed for realization of terahertz
metamaterials.

The real part of the dielectric function of a polar crystal [39, 43]
with the presence of dissipation can be written as ε∞ + X(ω), where



Progress In Electromagnetics Research B, Vol. 52, 2013 9

X(ω) = (ε0 − ε∞) ω2
T (ω2

T−ω2)

(ω2
T−ω2)2+γ2ω2 [43]. Here, γ is the absorption

coefficient (dissipation), ωT is the transverse optical phonon frequency,
ε∞ and ε0 are asymptotic values of dielectric constant when the
frequency is very large and small, respectively. For numerical
evaluation let’s consider the parameters of 2D PC made of Gallium
arsenide (GaAs) [a polar crystal] rods in air, considered in Ref. [43].
The parameters are ε0 = 12.66, ε∞ = 10.9, ωT = 0.4, and rrod =
0.472. Here rrod is the ratio of rod radius to the lattice constant of
the 2D PC, a. For γ = 0, the matrix polynomial is quadratic in
ω2 [Table 1] and has 2N positive roots, where N is the matrix size
[i.e., number of basis functions of the backbone]. For a nonzero γ,
the matrix polynomial is cubic in ω2 [Table 1], and the maximum
number of roots is 3N . For a given k-vector, the solution to the
polynomial eigenvalue problem [Equation (8)] is obtained using a “QZ
factorization” method [48].

Figure 1(a) shows the graphical form of solution [Equation (7)]
for an arbitrary wavevector in the first BZ, when εbb(r) = 1 + (ε∞ −
1)θ(r) [PC backbone] is used for the basis functions. For a discussion
we choose k = (2π/a)[0.15 0.35] and γ = 0.08. In the figure, the plots of
X(ω) and the eigenvalues En(ω) of the dielectric function operator [i.e.,
_

X(ω)] are shown for n = 1 to 4. Here, n is the index of the eigenvalues
of the dielectric function operator. The intersections between X(ω)
and En(ω) yield the eigenfrequencies of the dispersive PC [i.e., the
DPN]. The frequencies of dispersive PC are sorted in the ascending
order and denoted with a band index. Note that n is not the same
as the band index of the dispersive PC. For an example, in Fig. 1(a),
there are four values of n, but there are six intersections (i.e., solutions
correspond to six bands of the dispersive PC). It is also worth to note
that, the maximum value of n is N , however the maximum value for
the number of bands in a dispersive PC is 2N (when γ = 0) and 3N
(when γ 6= 0).

Figure 1(b) compares the convergence of the calculation [Equa-
tion (8)] when εbb(r) = 1 [empty lattice backbone] and εbb(r) =
1 + (ε∞ − 1)θ(r) [PC backbone] for band 4 of the dispersive PC [the
triangle dot in Fig. 1(a)] of the dispersive PC. As it is obvious from
the figure, the calculation with the basis functions of the PC back-
bone, exhibits much faster convergence compared to the convergence
of calculation with the basis functions of the empty lattice backbone.

To see the effect of the symmetry of the basis functions in
the convergence of calculation, let’s compute the frequencies at the
symmetrical k vectors, with and without the symmetrical sorting of
the basis functions. Symmetrical sorting refers to the sorting of the
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(a)

(b)

Figure 1. Graphical form of solution for frequencies of a 2D PC
constructed with cylindrical rods [radius of the cylinder = 0.472] made
of polar crystals. X(ω) is the dielectric function of polar crystal
with ε0 = 12.66, ε∞ = 10.9, ωT = 0.4 and γ = 0.08 (see text for
the parameter definitions). En(ω) is the eigenvalues of the dielectric
function operator [Equation (7)]. (b) Percent error as a function of
matrix size (N) in Equation (8), when εbb(r) = 1 (i.e., empty lattice
backbone) [red circles] and εbb(r) = 1+(ε∞−1)θ(r) (i.e., PC backbone)
[blue crosses] for the fourth band [i.e., the triangle dot in (a)].

basis functions of the same IR, and only the basis functions of the same
symmetry are included in constructing the matrices in Equation (8).
Fig. 2(a) shows the convergence of calculation with the PC backbone at
band 4 for the symmetrical k vectors without the symmetrical sorting.
The symmetrical k vectors of a square lattice is shown in Fig. 2(b).
Without the symmetry sorting, the calculated error as a function of
matrix size [size of Âr in Equation (8)], shows a “ladder” type of trends
for symmetrical k vectors [Fig. 2(a)], where the error does not change
over some range of matrix sizes. From Fig. 2(a) we can see that, the
range is wider for a k vector with a higher symmetry than a k vector
with a lower symmetry. We also can see that, for a non-symmetrical
k vector, the range is zero [for e.g., see the A vector]. This means
that for a non-symmetrical k vector, all the basis functions of the PC
backbone contribute towards the convergence of the calculation, and
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N 

N 

Matrix size (N) 

Matrix size (N) 

(a)

(b) (c)

M

A

L

X

Γ

Figure 2. (a) Percent error as a function of matrix size (N) in
Equation (8), at different symmetrical k vectors [band 4]. (b) Location
of k vectors in the irreducible BZ. (c) Percent error as a function of
matrix size (N) in Equation (8), at the band 4 of the Γ vector, with
[red line] and without [blue line] the symmetrical sorting of the basis
functions. Parameters of the PC for the both (a) and (c) are the same
as in Fig. 1(a).

for symmetrical k vectors only certain type of basis functions of the PC
backbone contributes towards the convergence. From our discussion
earlier, we can infer that these “certain type” of basis functions should
possess the same symmetry. For an example, band 4 at Γ point has
symmetry of B1 (label of the IR [10, 44–47]), and in Fig. 2(c) we showed
the convergence of calculation at band 4 when only basis functions with
the symmetries B1 are used in constructing the matrix coefficients of
Equation (8) [i.e., with a symmetrical sorting]. As it is clear from
the figure, only basis functions with the same symmetry contributes
towards the convergence of the calculation, and the convergence is very
rapid with the symmetrical sorting. To achieve an accuracy of ∼ 10−6

in the absolute error, |ω−ωconverged|, at Γ point (band 4), only matrices
with N = 7 are required with the symmetrical sorting.

From Figs. 1(b), 2(a), and 2(c), we can see that with the
PC backbone the convergence is very rapid, and results with high
accuracy can be achieved, even with a very small N . We also
found that, using the basis functions of the PC backbone, the scalar
polynomials [Equation (9)] with γ values between 0 to 0.1 and ωT
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values 0 to 1, produces results with error less than 1 percent for the
first twenty bands of all k vectors in the first BZ.

Knowing the accuracy provided by the scalar polynomials, let’s
examine the analytical details provided by them. Fig. 3(a) shows the
scalar polynomials for n = 1 to 4 (n is index of eigenvalues En(ω)
of dielectric function operator). As we can see from these figures the
scalar polynomials captures the essential features of the graphical form
of solution in Fig. 1(a). When n = 1, 2 and 4, there are only one
intersections between X(ω) and eigenvalues En(ω) [Fig. 1(a)] and the
corresponding polynomials [Fig. 3(a)] have only one root. When n = 3,
there are three intersections between X(ω) and En(ω) [Fig. 1(a)], and
the corresponding polynomial exhibits three roots [Fig. 3(a) and the
inset].

Figure 3. Scalar polynomials [Equation (9)] for the 2D PC with polar
crystals [parameters as in Fig. 1(a)].

Let’s analyze the asymptotic behavior of the scalar polynomial for
the case of PCs made of polar crystals. The cubic-scalar polynomial [in
ω2] for polar crystals with nonzero dissipation (γ) is P (ω) = ω6 −
ω4[ω2

n + ω2
T (2 + εθn)− γ2]− ω2[ω2

n(γ2 − 2ω2
T )− ω4

T (1 + εθn)]− ω2
nω4

T .
The asymptotic solutions for P (ω) = 0, when ωT → 0 and ωT →∞ are
ωn and ωn/

√
1 + εθn, respectively, where ε = ε0−ε∞ and θn = θnn. To

illustrate this we show exact solutions, together with the asymptotic
lines for γ = 0.08, n = 2 in Fig. 4(a). When γ = 0, we have quadratic
polynomial in ω2 [Table 1], P (ω) = ω4−ω2[ω2

n + ω2
T (1 + εθn)] + ω2

nω2
T ,

with two positive solutions for ω, ω1 and ω2 [ω2 > ω1]. The asymptotic
solutions for γ = 0, when ωT → 0 and ωT → ∞ are ω1 → 0[ω2 → ωn]
and ω1 → ωn/

√
1 + εθn[ω2 → ωT

√
1 + εθn], respectively. Another

interesting asymptotic solution is for ωn À ωT , which yields ω → ωT

[to obtain this divide P (ω) for γ = 0 with ω4
T and take the limit

ωn/ωT → ∞]. This solution is independent of θn [i.e., independent of



Progress In Electromagnetics Research B, Vol. 52, 2013 13

(a)

(b)

Figure 4. Normalized frequency ω as a function of transversal phonon
frequency, ωT for the 2D PC of polar crystals [parameters as in
Fig. 1(a) with n = 2] with dissipation (a) γ = 0.08 and (b) γ = 0.
In (a) [(b)], thick line [the circles] represents the solution to the scalar
polynomial.

k vector], and therefore explains the appearance of many dispersionless
bands (flat bands) when ω = ωT , in the photonic band structure [i.e.,
ω-k relationship] of the 2D PC made of polar crystals [39, 40, 43, 54, 55].
The exact solutions, together with the asymptotic lines are shown for
γ = 0, n = 2 in Fig. 4(b).

4. SUMMARY

In summary, we have presented a new and efficient approach for the
eigenvalue decompositions of a dispersive optical nanostructure. In the
proposed method, we split the dielectric function of the dispersive PC
into two components. One component has a non-dispersive dielectric
function and the other has the dispersive portion of the dielectric
function. The geometry described by the non-dispersive dielectric
function is defined as a backbone structure. To solve the entire
problem, we first solve the modes of the backbone structure. In the
second step, we use these modes as basic functions to solve the modes
of the dispersive optical nanostructure [via the eigenvalue problem
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of the dielectric function operator (Equation (7) or the polynomial
eigenvalue problem, Equation (8)]. If we select a backbone structure
that minimizes the frequency perturbation of the dielectric function of
the dispersive PC, then large portion of the problem is already solved
in the first step and therefore, rapid convergence can be achieved in the
second step [i.e., in solving Equations (7)–(8)]. Only few modes [modes
with the same symmetry] of the backbone structure are necessary to
construct the matrices in Equations (7) and (8). Indeed, by numerical
example we showed that for the particular case of a two-dimensional
photonic crystal made of polar crystals, scalar polynomial [which is a
result of Equation (8) with only one mode of the backbone photonic
crystal] yields accurate eigenfrequencies.

The presented approach is general as it can handle any form of
dielectric function as oppose to the previous direct method studies,
where only specific forms of dielectric functions are assumed. Further,
the approach is capable of producing semi-analytical descriptions for
the eigenfrequencies of the dispersive optical nanostructures.
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54. Ribbing, C. G., H. Högström, and A. Rung, “Studies of polaritonic
gaps in photonic crystals,” Appl. Opt., Vol. 45, 1575–1582, 2006.

55. Foteinopoulou, S., M. Kafesaki, E. N. Economou, and
C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals
as terahertz uniaxial metamaterials,” Phys. Rev. B, Vol. 84,
035128, 2011.


