Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-29
Analytical Design and FEM Verification of a Novel Three-Phase Seven Layers Switched Reluctance Motor
By
Progress In Electromagnetics Research, Vol. 140, 131-146, 2013
Abstract
The purpose of this paper is to propose analytical and finite element method (FEM) designs of a novel three-phase Seven Layers Switched Reluctance Motor (SLSRM) for the applications which dictated by the performance with the total torque per volume as a key marker indicator. The introduced motor consists of seven magnetically independent stator layers, which each layer includes a set of 4 by4 stator/rotor poles. In this SLSRM, the three layers are energized together to produce high torque and also decrease the torque ripple in comparison with the one layer conventional SRM. Since each layer has its independent phase in the motor, the isolation problem of coils and cooling troublesome existing in conventional SRMs is solved. In addition, these types of SLSRM have some other advantages, like simpler configuration, cooling in easier way, etc. Firstly an analytical design is carried out to illustrate the design procedure and then three-dimensional (3-D) magneto static simulation analysis of the SLSRM and the one layer SRM is performed using 3-D FEM, to obtain and verify the flux-linkage, flux density and torque profiles. Also, the proposed motor is compared with a conventional one layer SRM with a same size and volume.
Citation
Alireza Siadatan, Seyed Ebrahim Afjei, and Hossein Torkaman, "Analytical Design and FEM Verification of a Novel Three-Phase Seven Layers Switched Reluctance Motor," Progress In Electromagnetics Research, Vol. 140, 131-146, 2013.
doi:10.2528/PIER13040705
References

1. Hasegawa, Y., K. Nakamura, and O. Ichinokura, "A novel switched reluctance motor with the auxiliary windings and permanent magnets," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3855-3858, 2012.
doi:10.1109/TMAG.2012.2197734

2. Torkaman, H. and E. Afjei, "Radial force characteristic assessment in a novel two-phase dual layer SRG using FEM," Progress In Electromagnetics Research, Vol. 125, 185-202, 2012.
doi:10.2528/PIER12010408

3. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method ," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

4. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406

5. Afjei, E. and H. Torkaman, "The novel two phase field-assisted hybrid SRG: Magnetostatic field analysis, simulation, and experimental confirmation," Progress In Electromagnetics Research B, Vol. 18, 25-42, 2009.
doi:10.2528/PIERB09082404

6. Baoming, G., A. T. Almeida, and F. Ferreira, "Design of transverse flux linear switched reluctance motor," IEEE Transactions on Magnetics, Vol. 45, No. 1, 113-119, 2009.
doi:10.1109/TMAG.2008.2006193

7. Lim, H., R. Krishnan, and N. S. Lobo, "Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives," IEEE Transactions on Industrial Electronics, Vol. 55, No. 2, 534-542, 2008.
doi:10.1109/TIE.2007.911942

8. Takeno, M., A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, "Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles ," IEEE Transactions on Industry Applications, Vol. 48, No. 4, 1327-1334, 2012.
doi:10.1109/TIA.2012.2199952

9. Kano, Y., T. Kosaka, and N. Matsui, "Optimum design approach for a two-phase switched reluctance compressor drive," IEEE Transactions on Industry Applications, Vol. 46, No. 3, 955-964, 2010.
doi:10.1109/TIA.2010.2045212

10. Torkaman, H., E. Afjei, and M. S. Toulabi, "New double-layer-per-phase isolated switched reluctance motor: Concept, numerical analysis, and experimental confirmation," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 830-838, 2012.
doi:10.1109/TIE.2011.2158049

11. Lee, J. W., H. S. Kim, B. Kwon, and B. Taek, "New rotor shape design for minimum torque ripple of SRM using FEM," IEEE Transactions on Magnetics, Vol. 40, No. 2, 754-757, 2004.
doi:10.1109/TMAG.2004.824803

12. Torkaman, H., E. Afjei, and P. Yadegari, "Static, dynamic, and mixed eccentricity faults diagnosis in switched reluctance motors using transient finite element method and experiments," IEEE Transactions on Magnetics, Vol. 48, No. 8, 2254-2264, 2012.
doi:10.1109/TMAG.2012.2191619

13. Kechroud, A., J. J. H. Paulides, and E. A. Lomonova, "B-spline neural network approach to inverse problems in switched reluctance motor optimal design," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4179-4182, 2011.
doi:10.1109/TMAG.2011.2151183

14. Cai, J., Z. Q. Deng, R. Y. Qi, Z. Y. Liu, and Y. H. Cai, "A novel BVC-RBF neural network based system simulation model or switched reluctance motor," IEEE Transactions on Magnetics, Vol. 47, No. 4, 830-838, 2011.
doi:10.1109/TMAG.2011.2105273

15. Belfore, L. A. and A. A. Arkadan, "A methodology for characterizing fault tolerant switched reluctance motors using neurogenetically derived models ," IEEE Transactions on Energy Conversion, Vol. 17, No. 3, 380-384, 2002.
doi:10.1109/TEC.2002.801999

16. Torkaman, H. and E. Afjei, "Hybrid method of obtaining degrees of freedom for radial airgap length in srm under normal and faulty conditions based on magnetostatic model," Progress In Electromagnetics Research, Vol. 100, 37-54, 2010.
doi:10.2528/PIER09111108

17. Torkaman, H., E. Afjei, H. Babaee, and P. Yadegari, "A novel method in ACO and its application to rotor position estimation in SRM under normal and faulty conditions," Journal of Power Electronics, Vol. 11, No. 6, 856-863, 2011.
doi:10.6113/JPE.2011.11.6.856

18. Nabeta, S. I., I. E. Chabu, L. Lebensztajn, D. A. P. Correa, W. M. Silva, and K. Hameyer, "Mitigation of the torque ripple of a switched reluctance motor through a multiobjective optimization," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1018-1021, 2008.
doi:10.1109/TMAG.2007.915137

19. Torkaman, H. and E. Afjei, "Sensorless method for eccentricity fault monitoring and diagnosis in switched reluctance machines based on stator voltage signature," IEEE Transactions on Magnetics, Vol. 49, No. 2, 912-920, 2013.
doi:10.1109/TMAG.2012.2213606

20. Afjei, E., M. R. Tavakoli, and H. Torkaman, "Eccentricity compensation in switched reluctance machines via controlling winding turns/stator current: Theory, modeling and electromagnetic analysis," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 2, 168-172, 2013.

21. Li, G. J., J. Ojeda, E. Hoang, M. Lecrivain, and M. Gabsi, "Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles," IEEE Transactions on Magnetics, Vol. 47, No. 1, 839-847, 2011.
doi:10.1109/TMAG.2011.2104968

22. Du, J., D. Liang, L. Xu, and Q. Li, "Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1334-1337, 2010.
doi:10.1109/TMAG.2010.2041041

23. Torkaman, H. and E. Afjei, "Comprehensive detection of eccentricity fault in switched reluctance machines using high frequency pulse injection," IEEE Transactions on Power Electronics, Vol. 28, No. 3, 1382-1390, 2013.
doi:10.1109/TPEL.2012.2205947

24. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

25. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

26. Lecointe, J. P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Electromagnetics Research, Vol. 112, 125-137, 2011.

27. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network ," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

28. Mahmoudi, A., S. Kahourzade, N. A. Rahim, H. W. Ping, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.

29. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.

30. Wang, Q. and X. Shi, "A an improved algorithm for matrix bandwidth and profile reduction in finite element analysis," Progress In Electromagnetics Research Letters, Vol. 9, 29-38, 2009.
doi:10.2528/PIERL09042305

31. Tai, C.-C. and Y.-L. Pan, "Finite element method simulation of photoinductive imaging for cracks," Progress In Electromagnetics Research Letters, Vol. 2, 53-61, 2008.
doi:10.2528/PIERL07122807

32. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

33. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and L. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite ¯nite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

34. Magnet CAD Package User Manual, Infolytica Corporation Ltd., 2007.