Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-01
Domain Decomposition FE-BI-MLFMA Method for Scattering by 3D Inhomogeneous Objects
By
Progress In Electromagnetics Research, Vol. 139, 407-422, 2013
Abstract
The hybrid finite element-boundary integral-multilevel fast multipole algorithm (FE-BI-MLFMA) is a powerful method for calculating scattering by inhomogeneous objects. However, the conventional FE-BI-MLFMA often suffers from iterative convergence problems. A non-overlapping domain decomposition method (DDM) is applied to FE-BI-MLFMA to speed up the iterative convergence. Furthermore, a preconditioner based on absorbing boundary condition and symmetric successive over relaxation (ABC-SSOR) is constructed to further accelerate convergence of the DDM-FE-BI-MLFMA. Numerical experiments demonstrate the efficiency of the proposed preconditioned DDM-FE-BI-MLFMA.
Citation
Hong-Wei Gao, Ming-Lin Yang, and Xin-Qing Sheng, "Domain Decomposition FE-BI-MLFMA Method for Scattering by 3D Inhomogeneous Objects," Progress In Electromagnetics Research, Vol. 139, 407-422, 2013.
doi:10.2528/PIER13033101
References

1. Yuan, X., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Microwave Theory Tech., Vol. 38, 1053-1058, Aug. 1990.
doi:10.1109/22.57330

2. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. 39, 1598-1604, Nov. 1991.
doi:10.1109/8.102775

3. Angelini, J. J., C. Soize, and P. Soudais, "Hybrid numerical method for harmonic 3-D Maxwell equations: Scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium," IEEE Trans. Antennas Propagat., Vol. 41, 66-76, May 1993.
doi:10.1109/8.210117

4. Eibert, T. and V. Hansen, "Calculation of unbounded field problems in free space by a 3-D FEM/BEM-hybrid approach," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 61-77, Apr. 1996.
doi:10.1163/156939396X00216

5. Shao, H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

6. Ergul, O., "Parallel implementation of MLFMA for homogeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501

7. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203

8. Sheng, X. Q., J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral method for 3D scattering," IEEE Trans. Antennas Propagat., Vol. 46, 303-311, Mar. 1998.
doi:10.1109/8.662648

9. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, 1212-1221, Sep. 2002.

10. Sheng, X. Q. and E. K. N. Yung, "Implementation and experiments of a hybrid algorithm of the MLFMA-Enhanced FE-BI method for open-region inhomogeneous electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 50, 163-167, Feb. 2002.
doi:10.1109/8.997987

11. Peng, Z., X. Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

12. Farhart, C. and F. X. Roux, "A method of finite element tearing and interconnecting and its parallel solution algorithm," Int. J. Numer. Method Eng., Vol. 32, No. 32, 1205-1227, 1991.
doi:10.1002/nme.1620320604

13. Stupfel, B., "A fast-domain decomposition method for the solution of electromagnetic scattering by large objects," IEEE Trans. Antennas Propagat., Vol. 44, 1375-1385, Oct. 1996.

14. Wolfe, C. T., U. Navsariwala, and S. D. Gedney, "An efficient implementation of the finite-element time-domain algorithm on parallel computers using finite-element tearing and interconnecting algorithm," Microwave and Optical Technology Letters, Vol. 16, No. 4, Nov. 1997.

15. Wolfe, C. T., U. Navsariwala, and S. D. Gedney, "A parallel finite-element tearing and interconnecting algorithm for solution of the vectorwave equation with PML absorbing medium," IEEE Trans. Antennas Propagat., Vol. 48, 278-284, Feb. 2000.
doi:10.1109/8.833077

16. Stupfel, B. and M. Mognot, "A domain decomposition method for the vector wave equation," IEEE Trans. Antennas Propagat., Vol. 48, 653-660, May 2000.
doi:10.1109/8.855483

17. Vouvakis, M. N. and J.-F. Lee, "A fast non-conforming DP-FETI domain decomposition method for the solution of large EM problems," Proc. Antennas Propag. Soc. Int. Symp., Vol. 1, 623-626, Jun. 2004.

18. Lee, S.-C., M. N. Vouvakis, and J.-F. Lee, "A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays," J. Comput. Phys., Vol. 203, 1-21, Feb. 2005.

19. Vouvakis, M. N., Z. Cendes, and J.-F. Lee, "A FEM domain decomposition method for photonic and electromagnetic band gap structures," IEEE Trans. Antennas Propagat., Vol. 54, 721-733, Feb. 2006.
doi:10.1109/TAP.2005.863095

20. Lu, Z. Q., X. An, and W. Hong, "A fast domain decomposition method for solving three-dimensional large-scale electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 56, 2200-2210, Aug. 2008.
doi:10.1109/TAP.2008.926755

21. Li, Y. J. and J.-M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 54, 3000-3009, Oct. 2006.

22. Li, Y. J. and J. M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 55, 2803-2810, Oct. 2007.

23. Cui, Z. W., Y. Han, C. Y. Li, and W. J. Zhao, "Efficient analysis of scattering from multiple 3-D cavities by means of a FE-BI-DDM method," Progress In Electromagnetics Research, Vol. 116, 425-439, 2011.

24. Yang, M. L. and X. Q. Sheng, "On the finite element tearing and interconnecting method for scattering by large 3D inhomogeneous targets," International Journal of Antennas and Propagat., Vol. 2012, 1-6, 2012.

25. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Edition, Wiley, New York, 2002.

26. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory efficient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-63, 2011.

27. Amestoy, P. R., I. S. Duff, J.-Y. L'Excellent, and J. Koster, "A full asynchronous multifrontal solver using distributed dynamic scheduling," SIAM J. Matrix Anal. Appl., Vol. 23, No. 1, 15-41, Jan. 2001.
doi:10.1137/S0895479899358194