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Abstract—The hybrid finite element-boundary integral-multilevel
fast multipole algorithm (FE-BI-MLFMA) is a powerful method
for calculating scattering by inhomogeneous objects. However, the
conventional FE-BI-MLFMA often suffers from iterative convergence
problems. A non-overlapping domain decomposition method (DDM)
is applied to FE-BI-MLFMA to speed up the iterative convergence.
Furthermore, a preconditioner based on absorbing boundary condition
and symmetric successive over relaxation (ABC-SSOR) is constructed
to further accelerate convergence of the DDM-FE-BI-MLFMA.
Numerical experiments demonstrate the efficiency of the proposed
preconditioned DDM-FE-BI-MLFMA.

1. INTRODUCTION

The hybrid finite element-boundary integral (FE-BI) method is proved
to be a general and accurate numerical method for electromagnetic
problems [1–4]. The multilevel fast multipole algorithm is a powerful
tool for accelerating the matrix-vector multiplication and it is shown
to have ability to solve electrically large and complex problems [5–7].
Through employing the multilevel fast multipole algorithm (MLFMA),
the capability of FE-BI has been improved greatly [8]. Since BI results
in a full matrix equation, the final matrix of FE-BI is a locally full
matrix. It is difficult to solve this type of matrix efficiently, especially
for the case of electrically large problems. When the FE-BI matrix is
directly solved by iterative solvers, the convergence is very slow and
sometimes it is even impossible to achieve. Then, two methods are
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applied to improve the convergence of conventional FE-BI-MLFMA.
One is to construct a preconditioner resembling the sparse FE matrix
through replacing the boundary integral equation with the first-order
absorbing boundary condition (ABC) [9]. Numerical experiments have
demonstrated the fast convergence of solving FE-BI matrix adopting
ABC preconditioner. The other one is to decompose the FE-BI matrix
into the FE sparse matrix and the BI dense matrix, and handle
the FE matrix by ILU factorization method independently [10, 11].
Although the above two methods can accelerate the convergence
effectively, solving the inverse of a sparse matrix required in each
method consumes large memory. This bottleneck limits the application
of FE-BI-MLFMA in solving electrically large problems.

Domain Decomposition Method (DDM) has been recognized
as an important measure for designing efficiently computational
algorithms [12–16]. Recently, a non-overlapping finite element
domain decomposition method has been applied successfully in
electromagnetic scattering and radiation problems [17–24]. Numerical
experiments demonstrate the efficient performance of DDM, especially
for periodic structures. In DDM, the whole computational domain is
first decomposed into several sub-domains, and boundary condition
ensuring field continuity is employed at sub-domain interfaces. Each
sub-domain is solved independently. Then the adjacent sub-domains
are coupled by boundary condition at interfaces and the unique
solution for the whole computational domain is obtained consequently.
Because the original problem is torn into several sub-domain problems,
DDM enables the analysis of very electrically large problems using
existing computing resources.

In order to improve the convergence of the conventional FE-BI-
MLFMA and save the computer memory, a non-overlapping domain
decomposition method presented in [19, 20] is applied to FE-BI-
MLFMA effectively. Additionally, a novel mixed absorbing boundary
condition and block symmetry successive over relaxation (ABC-SSOR)
preconditioner is proposed to further accelerate the convergence. The
proposed method is successfully used for calculating scattering by 3D
inhomogeneous objects.

The rest of the paper is organized as follows: Firstly, the
formulation of DDM-FE-BI-MLFMA and the derivation of ABC-SSOR
preconditioner are detailed in the next section. Then, numerical
experiments are performed to investigate this hybrid method. Finally,
conclusions are drawn.
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2. FORMULATION

2.1. Domain Decomposition FE-BI-MLFMA Method

Consider scattering by an inhomogeneous object, whose surface is
denoted as S. According to the conventional FE-BI-MLFMA [8],
the computational domain is directly divided into interior domain and
exterior boundary by S. The interior domain is denoted as V . The
interior field is formulated into an equivalent variational problem (1)
according to electromagnetic vector wave equation.

F (E) =
1
2

∫

V

[
(∇×E) ·

(
[µr]

−1∇×E
)
− k2

0 [εr]E ·E
]
dv

+jk0

∫

S

(
E× H̄

) · n̂ds (1)

Here, H̄ = Z0H, with E and H denoting the unknown electric field
and magnetic field, respectively. In addition, Z0 is the free-space
impedance and k0 is the free-space wave number. n̂ denotes the
outward unit vector normal to S. The field on the exterior surface is
usually formulated into the following combined field integral equation
(CFIE) [25]:

[
1
2
n̂× H̄ + n̂×K(n̂× H̄) + n̂× L(E× n̂)

]

+n̂×
[
1
2
E× n̂ + n̂×K (E× n̂)− n̂× L

(
n̂× H̄

)]

= n̂× H̄inc (r)− n̂× n̂×Einc(r) r ∈ S (2)

with

L(X) = jk0

∫

S

[
X

(
r′

)
G0(r, r′) +

1
k2

0

∇′ ·X (
r′

)∇G0(r, r′)
]
ds′ (3)

K(X) =
∫

S
X(r′)×∇G0(r, r′)ds′ (4)

where the singular point r = r′ in (4) is removed.
According to the non-overlapping domain decomposition method,

we decompose the interior FEM domain into N non-overlapping sub-
domains and also separate exterior boundary as another sub-domain
from interior FEM domain in the same way. These sub-domains are
denoted as Vp(p = 1, 2, . . . , N,N + 1) as illustrated by Fig. 1, where
the last sub-domain VN+1 refers to the exterior boundary surface S.
Γj,i is used to represent the inner interface of sub-domain Vi adjacent
to Vj , with the corresponding outward unit normal vector being n̂i.
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Figure 1. Illustration of domain decomposition.

The field in the ith interior sub-domain satisfies the following
differential equation and boundary condition.

∇× [µr,i]−1(∇×Ei)− k2
0[εr,i]Ei = 0, in Vi ∈ R3

n̂i ×Ei = 0, on ∂VPEC,i

n̂i ×∇×Ei = 0, on ∂VPMC,i

(5)

In order to guarantee the field continuity at the sub-domain
interfaces and to get a convergent solution, a Robin-type transmission
condition is imposed at interfaces as (6).

n̂i × [µr,i]−1∇×Ei − jk0n̂i ×Ei × n̂i

= −n̂j × [µr,j ]−1∇×Ej − jk0n̂j ×Ej × n̂j on Γj,i (6)

In addition, dual variables, denoted as Ji and Jj , are imported at
the interfaces to decouple the adjacent sub-domains:

Ji =
1

−jk0

(
n̂i × [µr,i]−1∇×Ei

)
= n̂i × H̄i at Γj,i

Jj =
1

−jk0

(
n̂j × [µr,j ]−1∇×Ej

)
= n̂j × H̄j at Γi,j

(7)

In this way, each sub-domain becomes separated completely and can
be solved independently through combination of (5) and (6).

The domain of exterior boundary is formulated by the combined
integral Equation (2) and the Robin-type transmission condition (6).
The Robin-type transmission condition becomes the link between
exterior boundary and interior domain.

The boundary value problem formulated by differential Equa-
tions (5) and (6) is solved by finite element method. Firstly, the whole
interior domain is meshed by tetrahedral elements. Secondly, the whole
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interior domain is decomposed into N sub-domains. The electric field
Ei in the ith sub-domain is expanded with edge-element vector basis
function Wm,i, and Ji at the sub-domain interface is expanded with
n̂i ×Wm,Γ,i, which yields (8) and (9).

Ei =
M∑

m=1

Em,iWm,i = WT
i · Ei = ET

i ·Wi (8)

Ji = n̂i × H̄i =
MΓ∑

m=1

H̄m,i(ni ×Wm,Γ,i) = H̄T
i · (ni ×WΓ,i)

= (ni ×WΓ,i)T · H̄i (9)
with M and MΓ are the number of terms that expand Ei and Ji,
respectively.

For any interior sub-domain, by Galerkin’s method, (5) and (6)
are tested by Wi and n̂i×WΓ,i, respectively. Thus, the FEM equation
for the ith sub-domain is derived as (10).

AII,i AIΓ,i 0
AT

IΓ,i AΓΓ,i Ci

0 CT
i Di






EI,i

EΓ,i

H̄Γ,i


 =

∑

j∈neighbour(i)

[0 0 0
0 0 0
0 Fj,i Gj,i

]


EI,j

EΓ,j

H̄Γ,j


 (10)

Here, Γ represents field at the sub-domain interfaces and I represents
the field except that at interfaces. The sub-matrices in (10) are as
follows.

Ai =
[
AII,i AIΓ,i

AT
IΓ,i AΓΓ,i

]

=
∫

Vi

[
(∇×Wi) · [µr,i]−1(∇×Wi)T−k2

0Wi · [εr,i]WT
i

]
dv (11)

Ci = −jk0

∫

Γi

WΓ,i·(n̂i ×WΓ,i)Tds (12)

Di = −jk0

∫

Γi

(n̂i ×WΓ,i) · (n̂i ×WΓ,i)
T ds (13)

Fj,i = −jk0

∫

Γj,i

(n̂i ×WΓ,i) · (WΓ,j)
Tds (14)

Gj,i = jk0

∫

Γj,i

(n̂i ×WΓ,i) · (n̂j ×WΓ,j)
Tds (15)

On the boundary of the sub-domain S, we use Ws to test the
Robin-type transmission condition and obtain (16).

[KS ] ES + [MS ] H̄S =
∑

j∈neighbour(S)

{
[Rj,S ] EΓ,j + [Oj,S ] H̄Γ,j

}
(16)
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where

KS = −jk0

∫

S
WS · (WS)T ds (17)

MS = −jk0

∫

S
WS · (n̂S ×WS)T ds (18)

Rj,S = −jk0

∫

Γj,S

WS · (WΓ,j)
Tds (19)

Oj,S = jk0

∫

Γj,S

WS · (n̂j ×WΓ,j)
Tds (20)

Next, the CFIE on boundary S is discretized by the method of
moment (MOM) which yields (21).

[P] ES + [Q] H̄S = b (21)

The reader is referred to [8] for explicit expressions of the matrices P,
Q, and column vector b in (21).

For the sake of clarity, let

Xi =
[
ET

I,i, E
T
Γ,i, H̄

T
Γ,i

]T
(22)

Ãi =



AII,i AIΓ,i 0
AT

IΓ,i AΓΓ,i Ci

0 CT
i Di


 (23)

Sj,i =

[ 0 0 0
0 0 0
0 Fj,i Gj,i

]
(24)

Thus, (10) takes the form

ÃiXi =
∑

j∈neighbour(i)

Sj,iXj (25)

To proceed further, we introduce projection Boolean matrices

BEH̄,Γ,i and BH̄,Γ,i satisfying νi =
[
ET

Γ,i, H̄
T
Γ,i

]T
= BEH̄,Γ,iXi, H̄Γ,i =

BH̄,Γ,iXi, respectively. Then, multiply Ã−1
i on both sides of (25) and

remove EI,i at the same time. An equation only related with the field
at interfaces is obtained as (26).

νi =
∑

j∈neighbour(i)

ZiNj,iνj (26)

with

Zi = BEH̄,Γ,iÃ
−1
i BT

H̄,Γ,i (27)
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Nj,i = [ Fj,i Gj,i ] (28)

Assemble the interior sub-domains with exterior boundary domain
through Equations (16), (21), and (26). The system matrix equation
of DDM-FE-BI-MLFMA is derived as (29).



I1 −Z1N2,1 . . . −Z1N3,1 −Z1FS,1 −Z1GS,1

−Z2N1,2 I2 . . . −Z2N3,2 −Z2FS,2 −Z2GS,2
...

...
. . .

...
...

...
−ZNN1,N −ZNN2,N . . . IN −ZNFS,N −ZNGS,N

−K−1
S N

′
1,S −K−1

S N
′
2,S . . . −K−1

S N
′
N,S IE,S K−1

S MS

0 0 . . . 0 P Q







ν1

ν2
...

νN

Es

H̄s




=




0
0
0
0
0
b




(29)

where N′
j,S = [Rj,S Oj,S ].

From (29), it is obvious that the original 3D problem is reduced to
an interface problem for the unknown boundary conditions. Because
the number of unknowns in each sub-domain is much smaller than that
in the whole domain, the memory for solving Ã−1

i directly is saved
significantly. Equation (29) can be solved using a Krylov subspace
method with the aid of MLFMA which speeds up the matrix-vector
multiplication of PEs and QH̄s.

2.2. ABC-SSOR Preconditioner

Although the condition of coefficient matrix of (29) is much better than
that of the conventional FE-BI-MLFMA, it is still not well-conditioned,
and hence leads to a slow convergence. To further improve the
convergence of DDM-FE-BI-MLFMA, a novel efficient preconditioner
is constructed below.

[9] proposed an ABC preconditioner and verified its efficiency
for accelerating the convergence of the conventional FE-BI-MLFMA
by numerical experiments. Referring to it, the proposed method
firstly introduces the first-order absorbing boundary condition to
approximate the boundary integral equation, and yields a matrix P̄
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shown by (30).

P̄ =




I1 −Z1N2,1 . . . −Z1N3,1 −Z1FS,1 −Z1GS,1

−Z2N1,2 I2 . . . −Z2N3,2 −Z2FS,2 −Z2GS,2
...

...
. . .

...
...

...
−ZNN1,N −ZNN2,N . . . IN −ZNFS,N −ZNGS,N

−N
′
1,S −N

′
2,S . . . −N

′
N,S KS MS

0 0 . . . 0 −MT
S VS




(30)

where VS = −jk0

∫
S (n̂×WS) · (n̂×WS)T ds. Note that the last two

rows are corresponding to the boundary domain. Similar to the process
obtaining (26), we treat these two rows in P̄ and get matrix P̃.

P̃ =




I1 −Z1N2,1 . . . −Z1NN,1 −Z1NS,1

−Z2N1,2 I2 . . . −Z2NN,2 −Z2NS,2
...

...
. . .

...
...

−ZNN1,N −ZNN2,N . . . IN −ZNNS,N

−Z
′
SN

′
1,S −Z

′
SN

′
2,S . . . −Z

′
SN

′
N,S IS




(31)

where

Z′s =
[

KS MS

−MT
S VS

]−1

BT
E,S (32)

with BE,S is another Boolean matrix which satisfies ES =
BE,S [ET

S H̄T
S ]T .

The form of matrix (31) is suitable for adopting block symmetric
successive over relaxation (SSOR) technique [20]. Thus, a novel
mixed preconditioner P̃ABC-SSOR (33) for the DDM-FE-BI-MLFMA
is constructed. Because it includes absorbing boundary condition, it is
referred as ABC-SSOR preconditioner in this paper.

P̃ABC-SSOR = LU,

L =




I1 0 . . . 0 0
−Z2N1,2 I2 . . . 0 0

...
...

. . .
...

...
−ZNN1,N −ZNN2,N . . . IN 0
−Z

′
SN

′
1,S −Z

′
SN

′
2,S . . . −Z

′
SN

′
N,S IS




,

U =




I1 −Z1N2,1 . . . −Z1NN,1 −Z1NS,1

0 I2 . . . −Z2NN,2 −Z2NS,2
...

...
. . .

...
...

0 0 . . . IN −ZNNS,N

0 0 . . . 0 IS




(33)
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Note that L is the block lower part of P̃ABC-SSOR, while U is its upper
part. It is obvious that it is simple to solve the inverse of matrix
P̃ABC-SSOR. What’s more, there is no requirement for extra computer
memory.

3. NUMERICAL EXPERIMENTS

To demonstrate the accuracy, efficiency and capability of the presented
hybrid method, a series of numerical experiments are performed on a
computer server with 2 Intel X5650 2.66GHz CPUs, 96GB memory.
The GMRES iterative solver is employed to solve (29) with a restart
number of 20. The average edge length of tetrahedral mesh is 0.05λ.

Firstly, to verify the accuracy and efficiency of the preconditioned
DDM-FE-BI-MLFMA, the BI-static radar cross section (RCS) of a
homogenous dielectric sphere and a dielectric cube are calculated by
the conventional FE-BI-MLFMA presented in [8], the FE-BI-MLFMA
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Figure 2. BI-static V V -polarized RCS for the dielectric sphere in the
E-plane.
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Figure 3. BI-static V V -polarized RCS for the dielectric cube in the
E-plane.

of [10], and the preconditioned DDM-FE-BI-MLFMA in this paper,
respectively. The sphere constructed with material εr = 2.0 − 1.0j
has a diameter of 4λ and is illuminated by plane wave at incidence
angle θ = 0

◦
, ϕ = 0

◦
. The number of unknowns in the FEM- and

the BI-parts are 607,040 and 19,200, respectively, in totally 50 sub-
domains. The cube with εr = 2.0 has dimension of 2λ × 2λ × 2λ and
is illuminated by plane wave at incidence angle θ = 30

◦
, ϕ = 0

◦
. The

number of unknowns in the FEM- and the BI-parts are 462,520 and
28,800, respectively, in totally 38 sub-domains. The calculated RCS
are shown in Fig. 2 and Fig. 3. Fig. 2 and Fig. 3 show that the result
of the preconditioned DDM-FE-BI-MLFMA is in good agreement with
the Mie series and MOM solutions which verify the high accuracy of
the proposed hybrid method. Furthermore, we find the residual error
of 0.005 is sufficient for the preconditioned DDM-FE-BI-MLFMA while
the conventional FE-BI-MLFMA requires a maximum residual error of
0.001 (Fig. 2). It further confirms that the preconditioned DDM-FE-
BI-MLFMA has much smaller condition number than the conventional
FE-BI-MLFMA. Table 1 lists the main computational information
of the different methods. Compared with the conventional FE-BI-
MLFMA, the preconditioned DDM-FE-BI-MLFMA method improves
the convergence significantly. Even though the preconditioned DDM-
FE-BI-MLFMA needs more iteration number than the FE-BI-MLFMA
of [10], it can save computer memory effectively. It can be seen that the
FE-BI-MLFMA of [10] consumes more memory than the conventional
FE-BI-MLFMA of [8]. The reason is that the required memory in the
conventional FE-BI-MLFMA only needs to store sparse matrices [26],
whereas that the FE-BI-MLFMA of [10] requires large memory during
the inverse of the FEM sparse matrix solved by a sparse direct solver
based on the multifrontal approach [27]. Because the preconditioned
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DDM-FE-BI-MLFMA decomposes the large FEM sparse matrix into
several small sparse matrices and solve the inverse of these small
matrices directly, it consumes much less memory than the FE-BI-
MLFMA of [10].

To investigate the numerical scalability of the DDM-FE-BI-
MLFMA and the efficiency of the ABC-SSOR preconditioner for the
DDM-FE-BI-MLFMA, scattering by different homogenous dielectric

Table 1. Computational information of the different methods for two
numerical simulations.

Obects

Iteration Number

(residual error = 0.005)

Computational memory

(GB)

[8] [10] This paper [8] [10] This paper

Sphere 3295 14 32 0.6 13.15 3.17

Cube > 10000 77 153 0.9 8.74 2.88

Obects

Total CPU time (s)

(residual error = 0.005)

[8] [10] This paper

Sphere 1622 359 146

Cube > 5000 481 432

Table 2. Computational information for different objects.

Size
Unknowns Number of

sub-domainsFEM BI

1λ 59,660 7,200 5

2λ 462,520 28,800 38

3λ 1,544,580 64,800 129

4λ 3,641,840 115,200 307

5λ 7,090,300 180,000 600

Size

εr = 2.0

Iteration Number

εr = 2.0− j

Iteration Number

Without

ABC-SSOR

With

ABC-SSOR

Without

ABC-SSOR

With

ABC-SSOR

1λ 141 61 54 27

2λ 404 136 65 32

3λ 659 210 70 34

4λ 862 284 75 36

5λ 1083 364 78 37
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cubes under the incident plane wave of θ = 0
◦
, ϕ = 0

◦
are calculated.

The length of cube is changed from 1λ to 5λ at 1λ step. Two types
of objects are investigated. One is lossless dielectric material with
εr = 2.0 and the other is lossy dielectric material with εr = 2.0 − j.
Experiments are performed by the DDM-FE-BI-MLFMA without and
with ABC-SSOR preconditioner, respectively and the residual error is
set to 0.005. Detailed computational information is listed in Table 2.

It can be seen from Table 2 that the iteration number of
both without and with preconditioner increases fairly slowly with
the enlargement of the lossy cube. This indicates the DDM-
FE-BI-MLFMA has a good scalability for lossy dielectric objects.
However, the scalability is reduced considerably for lossless dielectric
objects. On the other hand, it is obvious that the ABC-SSOR
preconditioner can effectively improve the convergence of the DDM-
FE-BI-MLFMA treating lossless dielectric objects compared with that
without preconditioner.

Finally, two numerical experiments are carried out to demonstrate
the capability of the preconditioned DDM-FE-BI-MLFMA for 3D
electrically large objects. One is a homogeneous dielectric sphere with
diameter of 10λ, and εr = 3.0− j. The other one is a two layers coated
sphere with diameter of 20λ. The thickness of each coating layer is
0.05λ and relative permittivity is 3.0−j and 1.0−j from inner to outer.
They are illuminated by plane wave at incident angle θ = 0◦, ϕ = 0◦.
The residual error is set to 0.005 in all simulations. The obtained BI-
static RCS are plotted in Fig. 4 and Fig. 5 and detailed computational
information is listed in Table 3. These two experiments demonstrate
that the preconditioned DDM-FE-BI-MLFMA is a powerful tool for
3D electrically large and complex objects.
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Figure 4. BI-static V V -polarized RCS for the homogeneous dielectric
sphere in the E-plane.
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Table 3. Computational information for different objects.

Objects
Number of Unknowns Number of

sub-domainsFEM BI

Dielectric

Sphere
9,393,600 120,000 800

Coated

Sphere
2,720,004 480,000 192

Objects
Memory

(GB)

Iteration

Number

Time

(min)

Dielectric

Sphere
71.81 59 49

Coated

Sphere
13.15 122 61
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Figure 5. BI-static V V -polarized RCS for the coated sphere in the
E-plane.

4. CONCLUSIONS

FE-BI-MLFMA combined with a non-overlapping domain decomposi-
tion method is presented in this paper. It employs Robin-type trans-
mission condition to not only decompose interior FEM domain into
several sub-domains but also separate exterior boundary surface from
interior FEM domain. By a series of mathematic transformations,
the three-dimensional problem is transformed into a problem related
with sub-domain interfaces. Furthermore, a novel ABC-SSOR pre-
conditioner is constructed to improve the convergence of DDM-FE-
BI-MLFMA. Numerical experiments are performed to demonstrate
the capability of this new hybrid method. Compared with the con-
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ventional FE-BI-MLFMA, the preconditioned DDM-FE-BI-MLFMA
can speed up the iterative convergence significantly. What’s more, it
doesn’t consume memory strongly. Numerical results show that the
proposed method demonstrates good scalability for lossy dielectric ob-
jects. However, its scalability reduces for lossless dielectric objects.
The proposed novel ABC-SSOR preconditioner can further improve
the convergence of the DDM-FE-BI-MLFMA, especially in treating
the slow convergence phenomenon of lossless medium. High capability
of the preconditioned DDM-FE-BI-MLFMA is also demonstrated by
numerical experiments.
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