Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-30
Using Wavelet Entropy to Distinguish Between Humans and Dogs Detected by UWB Radar
By
Progress In Electromagnetics Research, Vol. 139, 335-352, 2013
Abstract
When using ultra-wide band (UWB) radar to detect targets in various conditions, identifying whether the target buried under building debris or in bad visibility conditions is a human or an animal is crucial. This paper presents the application of the wavelet entropy (WE) method to distinguish between humans and animal targets through brick wall and in free space at a certain distance. In the study, WE, WE change, and WE of the related range points were estimated for the echo signals from five humans and five dogs. Our findings indicate that the entropy or degree of disorder in the energy distribution of the human target was much lower than that of the dog, and the waveform of the human's entropy was smoother than that of the dog. In addition, the body micro motions of humans are much more ordered than those of dogs. WE can be employed as a quantitative measure for recognizing invisible targets and may be a useful tool in the UWB radar's practical applications.
Citation
Yan Wang, Xiao Yu, Yang Zhang, Hao Lv, Teng Jiao, Guohua Lu, Wen Zhe Li, Zhao Li, Xijing Jing, and Jianqi Wang, "Using Wavelet Entropy to Distinguish Between Humans and Dogs Detected by UWB Radar," Progress In Electromagnetics Research, Vol. 139, 335-352, 2013.
doi:10.2528/PIER13032508
References

1. Zhu, F., S. C. S. Gao, A. T. S. Ho, T. W. C. Brown, J. Li, and J. D. Xu, "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.2528/PIER11080907

2. Sun, J. and M. Li, "Life detection and location methods using UWB impulse radar in a coal mine," Mining Science and Technology (China), Vol. 21, 687-691, 2011.
doi:10.1016/j.mstc.2011.03.007

3. Shaban, H. A., M. Abou El-Nasr, and R. M. Buehrer, "Reference range correlation (RRcR) ranging and performance bounds for on-body UWB-based body sensor networks," Progress In Electromagnetics Research B, Vol. 35, 69-85, 2011.
doi:10.2528/PIERB11082212

4. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Numerical modelling for ultra wideband radar breast cancer detection and classification," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011.

5. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

6. Zheng, W., Z. Zhao, and Z. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202

7. Desrumaux, L., M. Lalande, J. Andrieu, V. Bertrand, and B. Jecko, "An innovative radar imaging system based on the capability of an UWB array to steer successively in different directions," Progress In Electromagnetics Research B, Vol. 32, 91-106, 2011.
doi:10.2528/PIERB11053003

8. Liu, Z., L. Liu, and B. Barrowes, "The application of the Hilbert-Huang transform in through-wall life detection with UWB impulse radar," PIERS Online, Vol. 6, No. 7, 695-699, 2010.
doi:10.2529/PIERS100217122115

9. Lv, H., G. H. Lu, X. J. Jing, and J. Q. Wang, "A new ultra-wideband radar for detecting survivors buried under earthquake rubbles," Microwave and Optical Technology Letters, Vol. 52, No. 11, 2621-2624, 2010.
doi:10.1002/mop.25539

10. McGinley, B., M. O'Halloran, R. C. Conceicao, G. Higgins, E. Jones, and M. Glavin, "The effects of compression on ultra wideband radar signals," Progress In Electromagnetics Research, Vol. 117, 51-65, 2011.

11. Sharafi, A. and A. Ahmadian, "Respiration-rate estimation of a moving target using impulse-based ultra wideband radars," Australas Phys. Eng. Sci. Med., Vol. 35, 31-39, 2012.
doi:10.1007/s13246-011-0112-2

12. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

13. Li, Y. F., X. J. Jing, H. Lv, and J. Q. Wang, "Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar," Progress In Electromagnetics Research, Vol. 126, 429-447, 2012.
doi:10.2528/PIER12011908

14. Jia, Y., L. Kong, and X. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.2528/PIER11052402

15. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

16. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

17. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

18. Li, W. Z., Z. Li, H. Lv, G. H. Lu, Y. Zhang, X. J. Jing, S. Li, and J. Q. Wang, "A new method for non-line-of-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar," Progress In Electromagnetics Research, Vol. 133, 535-554, 2013.

19. Anishchenko, L. N., A. S. Bugaev, S. I. Ivashov, and I. A. Vasiliev, "Application of bioradiolocation for estimation of the laboratory animals' movement activity," PIERS Online, Vol. 5, No. 6, 551-554, 2009.

20. Donohue, K. D., D. C. Medonza, E. R. Crane, and B. F. O'Hara, "Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice," BioMedical Engineering Online, Vol. 7, No. 1, 1-14, 2008.
doi:10.1186/1475-925X-7-14

21. Otero, M., "Application of a continuous wave radar for human gait recognition," Proceedings of SPIE, Signal Processing, Sensor Fusion and Target Recognition, Vol. 5809, 538-548, 2005.

22. Yarovoy, A. G., L. P. Ligthart, J. Matrzas, and B. Levitas, "UWB radar for human being detection," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, No. 5, 36-40, May 2008.
doi:10.1109/MAES.2008.4523914

23. Shannon, C. E., "A mathematical theory of communication," Bell System Technical Journal, Vol. 27, 379-423, Jul. 1948; 623-656, Oct. 1948.

24. Blanco, S., A. Figliola, R. Quian Quiroga, O. A. Rosso, and E. Serrano, "Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function," Physical Review E, Vol. 57, 932-940, 1998.
doi:10.1103/PhysRevE.57.932

25. Rosso, O. A., S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schurmann, and E. Basar, "Wavelet entropy: A new tool for analysis of short time brain electrical signals," Journal of Neuroscience Methods, Vol. 105, 65-75, 2001.
doi:10.1016/S0165-0270(00)00356-3

26. Yordanova, J., V. Kolev, O. A. Rosso, M. Schurmann, O. W. Sakowitz, M. Ozgoren, and E. Basar, "Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance," Journal of Neuroscience Methods, Vol. 117, 99-109, 2002.
doi:10.1016/S0165-0270(02)00095-X

27. Al Nashash, H. A., "Wavelet entropy for subband segmentation of EEG during injury and recovery," Annals of Biomedical Engineering, Vol. 31, 653-658, 2003.
doi:10.1114/1.1575757

28. Quiroga, R. Q., O. A. Rosso, and E. Basar, "Wavelet entropy: A measure of order in evoked potentials," Electr. Clin. Neurophysiol., Vol. 49, 298-302, 1998.

29. Immoreev, I. and S. Ivashov, "Remote monitoring of human cardio-respiratory system parameters by radar and its applications," Ultrawideband and Ultrashort Impulse Signals, 34-38, Sevastopol, Ukraine, Sep. 15-19, 2008.

30. Singh, S., Q. Liang, D. Chen, and S. Li, "Sense through wall human detection using UWB radar," EURASI Journal on Wireless Communications and Networking, Vol. 2011, No. 20, 1-11, 2011.

32. Zeng, T., C. Mott, D. Mollicone, and L. D. Sanford, "Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity," Journal of Neuroscience Methods, Vol. 24, 276-287, 2012.
doi:10.1016/j.jneumeth.2011.12.001