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Abstract—When using ultra-wide band (UWB) radar to detect
targets in various conditions, identifying whether the target buried
under building debris or in bad visibility conditions is a human or an
animal is crucial. This paper presents the application of the wavelet
entropy (WE) method to distinguish between humans and animal
targets through brick wall and in free space at a certain distance.
In the study, WE, WE change, and WE of the related range points
were estimated for the echo signals from five humans and five dogs.
Our findings indicate that the entropy or degree of disorder in the
energy distribution of the human target was much lower than that of
the dog, and the waveform of the human’s entropy was smoother than
that of the dog. In addition, the body micro motions of humans are
much more ordered than those of dogs. WE can be employed as a
quantitative measure for recognizing invisible targets and may be a
useful tool in the UWB radar’s practical applications.

1. INTRODUCTION

Ultra-wide band (UWB) is an attractive technology in different
applications such as military industry, rescue missions, clinical
medicine, etc. With its wide bandwidth and high spatial resolution,
UWB radar can penetrate non-metallic objects, such as bricks, wood,
dry walls, concrete and reinforced concrete. This allows for the
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detection and localization of survivors buried under building debris
after an earthquake, landslide, or fire [1–13].

The UWB radar can detect vital targets based on their periodic or
non-periodic body movements or respiration, which means that both
human and animal targets can be detected. Pets such as dogs living
together with humans would probably be buried under rubbles after an
earthquake. In this incident, as the trapped target’s body movements
are generally restricted, detection can be performed based mainly on
the target’s respiratory movements. The main methods to insure the
presence or absence of vital targets are based on the periodic property
of respiration or the certain frequency range of respiration [8, 13].
However, the respiratory rate of some animals such as dogs is similar to
that of humans, which means only the detecting methods mainly used
are useless in distinguishing between stationary humans and stationary
animals. For the UWB radar system, identification and classification
of vital signs are critically important in disaster rescue missions or
surveillance. Searching for and rescuing more people in a timely manner
is the key to a successful rescue after an earthquake. In an anti-
terrorism mission, any anti-terrorism actions may be influenced if an
animal’s presence is not recognized properly. Therefore, unambiguous
identification and classification of life targets are crucial for developing
a UWB radar system for use in practical applications.

Current research primarily focuses on the use of UWB radar for
vital signs detection, to detect and identify people buried underground,
track moving human targets, or detect multi-stationary human
targets [14–18]. The characteristics of animals detected by radar have
also been studied [19, 20]. For example, [19] investigates different
states of laboratory rats’ movement activities. These studies aim
to estimate laboratory animals’ movement activities through a non-
contact monitoring system, but not in detection applications.

Despite extensive research on propagation characteristics in
humans and animals, few studies focus on the differences between the
characteristics of radar echoes of humans and animals. In [21], the
spectrograms of human targets were found to be different from that of
other detected slow-moving targets, such as dogs. The difference in the
modulation pattern due to the leg motion between the two was obvious.
However, the difference in the spectrograms between the human and
the dog based mainly on their different walking speed, which means
the spectrogram method is not applicable in recognizing motionless
targets in disaster search and rescue operations.

In [22], the UWB radar successfully detected a stationary person
who held breathing detecting by his micro motions, which means the
detector can detect a person based on his involuntary micro motions
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that caused by physiological factors even if the person do not breath
and not move. Therefore, the micro motions of targets can be the part
and parcel to distinguish humans and animals. Considering a large
part of the psychological effects and emotional and mental control,
as well as additional undefined external influences, the reactions of
humans and animals have their own characteristics, which means that
body micro motions caused by the reactions of humans and animals
also have their own characteristics, especially in incidents such as an
earthquake disaster. With emotional and mental control, the reactions
of humans are more rational than that of animals. Consequently, the
micro motions of humans are more ordered compared with that of
animals. According to the information theory, entropy is a relevant
measure of order and disorder in a dynamic system, and can evaluate
a complex signal quantitatively [23]. As non-stationary signals, the
echoes caused by body motions are complex and vary in relation to
time, amplitude, and frequency. Instantaneous changes of the echo
signals caused by the body motions of humans and animals may also
have their own rhythms. As a common tool used to analyze localized
variations of non-stationary signals, wavelet analysis can provide an
accurate temporal localization for the signal [24]. Therefore, entropy
based on wavelet transform called wavelet entropy (WE) can quantify
precisely time dynamics of order/disorder states of the echo signals [25].
The aim of this paper is to find the differences in WE between humans
and dogs detected by the UWB radar.

The paper is organized as follows. Section 2 briefly describes the
UWB system, which is implemented with low center frequency radar to
ensure good penetration ability. Section 3 presents the pre-processing
method and analyzes the obtained data. Section 4 describes the
wavelet entropy processing method. Results from different experiments
are shown in Section 5. Conclusions are drawn in Section 6.

2. UWB RADAR SYSTEM

The UWB radar setup is illustrated in Figure 1. The pulse generator
produces trigger pulses with a pulse repetition frequency of 256 kHz.
The pulses are sent to the transmitter and shaped into bipolar
pulses to excite the transmitting antenna. The vertically polarized
pulses are transmitted by the bow-tie dipole antenna with an average
transmit power of about 5 mW. The reflected pulses are received by the
receiving antenna which is identical to the transmitting antenna. In
addition, the received pulses are sampled, integrated, and amplified,
then stored as waveforms through the digital signal processor. The
waveforms are sampled into 4096 points, and the recorded duration
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Figure 1. UWB radar setup.

is 40 ns. As to the electromagnetic theory, higher frequencies have
higher spatial resolution; however, the system has weaker penetrating
properties [13]. Considering practical applications such as earthquake
rescue, the penetration ability must be taken into account. Therefore,
the UWB system in this study was implemented with radar of low
center frequency of 400MHz, and the bandwidth of the received pulse
is about 600 MHz.

3. SIGNAL PROCESSING AND ANALYSES

A stationary human and a stationary dog target, both located 3m
away from the antennas, were detected. According to [9], unwanted
objects and noise produce a considerable amount of clutter in the
acquired data. To obtain the targets’ signals and accurately locate the
targets, the measured data were pre-processed, and the power spectra
were calculated, as shown in Figure 2. The magnitude of the power
spectrum represents the power of signals in different ranges. A larger
and more ordered signal indicates that the magnitude of the power
spectrum is larger [10]. As shown in Figure 2, the respiration signal of
the target is larger and more regular compared with random signals.
Therefore, the maximum peak of the power spectrum corresponded to
the location of the target. Figure 2(a) shows the power spectrum of
the human target and indicates that the target’s position was located
accurately. The dog target’s position can also be located accurately
according to Figure 2(b). Although the magnitude of the human
target’s power spectrum was somewhat larger than that of the dog
target, the magnitude of the power spectrum varied with the detecting
environments. No other obvious difference was found between the
power spectra of the human target and the dog target. Therefore, the
power spectrum method is not a credible way to distinguish between
humans and dog targets.
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Figure 3 shows the spectra of the received signals. Figure 3(a)
shows that the band spectrum of the human’s signal is narrow with
a principal frequency of 0.23 Hz, whereas Figure 3(b) shows that the
band spectrum of the dog’s signal is wider and has many high frequency
components. The principal frequency of the band spectrum of the dog
target’s signal is 0.24Hz, which is almost the same as that of the human
target. However, the components of the dog target’s signal were more
complex. Despite some differences between the spectra of the signals
of the human target and the dog target, the echo signals’ spectra
depended on the detecting conditions and cannot be distinguished
quantitatively.
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Figure 2. Power spectra of targets located 3 m away from the
antennas. (a) Power spectrum of the human target. (b) Power
spectrum of the dog target.
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Figure 3. Spectra of the echo signals. (a) Spectrum of the human’s
signal. (b) Spectrum of the dog’s signal.
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4. WAVELET ANALYSIS

The above analysis indicates that the frequency components of the
human and the dog targets differ to a certain extent. The dog target’s
signal had more complex components compared with that of the human
target. Wavelet analysis can provide a time-frequency representation
of the signal with optimal time-frequency resolution, and as a relevant
measure of order or disorder in a dynamic system, entropy can quantify
the signal’s frequency components [23]. To better understand the time
evolution of frequency patterns and quantify the degree of order of the
echo signal, the entropy based on wavelet transform was used.

4.1. Wavelet Transform

Wavelet transform is a useful computational tool for a variety of signal
applications. It was first introduced in 1984 by Grossmann and Morlet,
and is an extension of the Fourier and Gabor transforms. Similar to
Gabor transform, wavelet transform can decompose a signal in both
time and frequency using a time window of varying widths; the wide
windows correspond to low frequencies and the narrow windows to
high frequencies. Consequently, the time-frequency resolution is high
and accurate for all frequencies and can reveal the time evolution of
frequencies in the analyzed signal.

The wavelet is a smooth and quickly vanishing oscillating function
with good localization in both frequency and time. Morlet first
considered wavelets as a family of functions generated by translations
and dilations of a unique function called the “mother wavelet” ψ(t).
The family wavelet are defined as

ψa,b (t) = |a|−1/2 ψ

(
t− b

a

)
a, b ∈ R, a 6= 0 (1)

where a is the scaling parameter or scale which measures the degree
of compression, b the translation parameter which determines the time
location of the wavelet, and t stands for time. If |a| < 1, then the
wavelet in (1) is the compressed version of the mother wavelet and
corresponds to higher frequencies. On the other hand, when |a| > 1,
then ψa,b(t) has a larger time-width than ψ(t) and corresponds to lower
frequencies. As a result, wavelets have time-widths and can adapt to
their frequencies.

The continuous wavelet transform (CWT) of a signal S(t) ∈ L2(<)
is defined as the correlation between the series S(t) with the family
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wavelet ψa,b for each a and b

Ws (a, b) =
∫ +∞

−∞
S (t)ψa,b

∗ (t) dt = 〈S, ψa,b〉 with ψa,b (t)

= |a|−1/2ψ

(
t− b

a

)
(2)

By selecting a special mother wavelet function ψ(t) and the discrete
set of parameters, aj = 2−j and bj,k = 2−jk, with j, k ∈ Z, the wavelet
family could be presented as

ψj,k (t) = 2i/2ψ
(
2jt− k

)
j, k ∈ Z (3)

The correlated discrete wavelet transform (DWT) of signal S(t) can
be obtained by

DWT s (j, k)=
∫ +∞

−∞
S(t)ψj,k (t)dt=2−j/2

∫ +∞

−∞
S (t)ψ

(
2−jt−k

)
dt (4)

The DWT can provide a non-redundant representation of the
signal, and the values constitute the coefficients in a wavelet series.
These wavelet coefficients not only provide relevant information in a
simple way but also provide a direct estimation of local energies at
different scales. Furthermore, the information can be organized in a
hierarchical scheme of nested subspaces which is called multiresolution
analysis in L2(<).

For practical signal processing, the signal is assumed to be given
by the sampled values S = {s0(n), n = 1, . . . ,M}. According to the
wavelet theories, the signal can be expressed as

S (t) =
−1∑

j=−N

∑

k

Cj (k) ψj,k (t) (5)

where j = −1,−2, . . . ,−N is the number of resolution levels, and its
maximum value is N = log2(M) if the decomposition is carried out
over all resolutions levels. C1(k), C2(k), . . . , CN (k) are the wavelet
coefficients.

4.2. Relative Wavelet Energy

Orthogonal wavelet bases were used to decompose the signal.
Therefore, the decomposed signals could be regarded as a direct
estimation of local energies at different scales, and the wavelet
coefficients can be given by Cj(k) = 〈S, ψj,k〉. Thus, the wavelet energy
at resolution j can be defined as

Ej =
∑

k

|Cj (k)|2 (6)
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To study the temporal evolution of the above-defined quantifiers,
the radar signal is divided among nonoverlapping temporal windows
of length L. For each interval i (i = 1, . . . , NT , with NT = M/L),
appropriate signal values are assigned to the central point of the time
window. In case of diadic wavelet decomposition, the number of wavelet
coefficients from all resolution levels is two times smaller than in the
previous level. Here, the minimum length of the temporal window
includes at least one coefficient at each level. By considering the mean
wavelet energy instead of the total wavelet energy, the mean energy at
each resolution level j = −1,−2, . . . ,−N for the time window i using
the wavelet coefficients is

E
(i)
j =

1
Nj

i·L∑

k=(i−1)L+1

|Cj (k)|2 (7)

where N j is the number of wavelet coefficients at resolution j included
in the time window i.

As a result, the total energy of the wavelet coefficients at time
window i can be obtained by

E
(i)
total =

∑

j<0

E
(i)
j (8)

Then, the relative wavelet energy, which represents the energy’s
probability distribution in scales, will be given by

p
(i)
j = E

(i)
j /E

(i)
total (9)

Clearly,
∑

j p
(i)
j = 1 and the distribution {p(i)

j } is considered a time-
scale density.

4.3. Wavelet Entropy

According to the Shannon entropy [23], which provides a measure
of the information of any distribution for analyzing and comparing
probability distribution, we define the temporal behavior of WE as [26]

H
(i)
WT (p) = −

∑

j<0

p
(i)
j · ln

[
p
(i)
j

]
(10)

To obtain a quantifier for the whole time period, the radar signal’s
mean WE can be defined as

HWT =
1

NT

NT∑

i=1

H
(i)
WT (11)
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Entropy is defined as a measure of uncertainty of the quantitative
information in a system. The entropy value of a signal reflects the
degree of complexity that the signal possesses. A more disordered
signal indicates higher entropy [27]. Associating with the WT, which
can be defined from a time-frequency representation of the signal,
the entropy based on the WT, called WE, can provide additional
information about the underlying dynamical process of the signal [28].
A periodic mono-frequency signal with a narrow band spectrum can
be considered an ordered process, and its wavelet energy will be in
one unique wavelet resolution. Consequently, its WE will be near
zero or of a very low value. A totally random signal can represent
a very disordered behavior and will have a wavelet representation
with significant contributions from all frequency bands. Moreover, the
wavelet energies will be almost equal for all resolution levels, thereby
producing WE with maximal values.

4.4. Standard Deviation of Wavelet Entropy

In this study, the WE of the reflected signals based on the UWB
radar was evaluated to reflect the body motion’s rhythm associated
with either body displacements or breathing. The non-stationary
signal’s frequency structure and the degree of order varied over time.
Therefore, the WE of the signal fluctuated with time. To evaluate
the entropy changes in relation to the mean entropy of the signal, the
standard deviation of the WE was used as a measurable parameter,
which can be defined as

SWT =

{
1

NT

NT∑

i=1

(
H

(i)
WT −HWT

)2
} 1

2

(12)

5. EXPERIMENTS AND RESULTS

The study involved 5 healthy humans aged between 22 and 25 years and
5 healthy dogs aged about 1 year who weighed between 20 kg and 25 kg.
All dogs were provided by the Fourth Military Medical University.

Two experimental conditions were considered. In the first case,
no obstacle was present between the targets and the antennas. In the
second case, a 28 cm-thick brick wall was present between the targets
and the antennas.

In the first case, each human target stood stationary with normal
respiration 3 m away from the antennas. Each dog lay prone quietly
on the experimental bench 3m away from the antennas. In the second
case, the states of the targets were the same as in the first case.
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The targets were also located 3 m away from the antennas. A 28 cm-
thick brick wall stood between the targets and the antennas. The
experimental scenarios are shown in Figure 4.
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Figure 4. Scenarios for measuring targets using UWB radar.
(a) Scenario for unobstructed case. (b) Scenario for obstructed case.

To quantitatively distinguish between humans and dog targets, the
wavelet entropy was used on the radar signals to evaluate differences
in complexity between humans and dogs. In the study, to contain at
least one spectral coefficient from each frequency band, we used a time
window length of 128 samples. As mentioned, in the UWB system, the
received pulses were sampled into 4096 points. The maximum point
of the power spectrum was regarded as the position of the target. A
typical behavior of wavelet entropy over time is shown in Figure 5.
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signals of targets located 3 m away from the antennas. (a) Entropy of
the human target. (b) Entropy of the dog target.
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Figure 5 shows that the entropy value of both the human and the
dog fluctuated as time progressed. Compared with the dog’s entropy,
the value of the human’s entropy was much lower, and the amplitude
was between 0.015 and 0.068, with a mean value of 0.04. The value of
the dog’s entropy fluctuated between 0.02 and 0.35, with a mean value
of 0.18, which indicates that the entropy of the dog changed more
significantly compared with that of the human. We used the mean
WE value as the target’s entropy. Figure 6 shows the mean WE values
of the five humans and five dogs in the two experimental scenarios.
The values of the dog targets’ mean WE were higher than that of the
human targets in the two scenarios. In both the obstructed and the
unobstructed cases, the values of the five human targets’ mean WE
were between 0.02 and 0.08 and those of the five dog targets’ mean
WE were between 0.18 and 0.26. The WE values in the second case
were higher in both human and dog targets. As Figure 7 shows, the
signal in the obstructed case had more frequency components than
that in the unobstructed case. This condition can be attributed to the
clutter caused by the wall, which made the signals more complex.
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Figure 6. Mean wavelet entropy of five human targets in the
unobstructed case (human free space), the obstructed case (human
through wall), and five dog targets in the unobstructed case (dog free
space) and the obstructed case (dog through wall).

To quantify the entropy changes, the standard deviations of the
WE of the five humans and the five dogs are shown in Figure 8.

As Figure 8 illustrates, the standard deviation of the human’s WE
was smaller than that of the dog in the obstructed and unobstructed
cases. The changes of WE of the human and the dog differed
significantly in the two experimental cases, which suggests that the
WE of the human displayed almost constant values unlike that of the
dog. No obvious difference between the standard deviations of WE
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Figure 7. Spectra of a human target in both unobstructed and
obstructed cases. (a) Spectrum in the unobstructed case. (b) Spectrum
in the obstructed case.
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Figure 9. Data matrix received
from the target located 3 m away
from the antennas.

was observed in the two experimental cases. Combined with Figures 5
and 8, the changes in the time evolution of WE in the human’s signal
were smaller than those in the dog’s signal. Therefore, the human’s
and the dog’s signals differed significantly.

According to the observation and the analysis of the data, the echo
signals of targets fluctuated not just in one point, but over a certain
range, as shown in Figure 9.
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We compressed the 4096 points along the fast time index which
associated to range into 2048 points [18]. As Figure 9 shows, the target
located in the 1100 point. The target signal and its adjacent signals
had high correlation coefficients [13]. The obtained reflected signal
was caused by the target’s skin and internal organ movements or the
movements of other parts of the body, which is why the scope of the
target’s movements was not just fixed in one point. Figure 10 illustrates
the entropies of the echo signals’ 201 points before and after the targets’
position for 100 points. Entropies of both the human and the dog target
were periodic functions, and the cycle was approximately 40. Figure 11
illustrates a cycle of the entropies of the echo signals’ 41 points before
and after the targets’ position for 20 points. As Figure 11(a) shows,
the value of the human target’s entropy in the first case was quite
low, with a value below 0.05. The entropies of the points before and
after the target’s point for 15 points were at the same level with the
target’s points. The human target’s entropy had a regular and smooth
shape. Figure 11(b) shows the dog target’s entropy in the first case.
The value of the dog’s entropy was above 0.15, and some points’ mean
WE had the same value as the target’s point. However, the scope was
much smaller than that of the human. The shape of the dog target’s
entropy was not as smooth as that of the human. The entropies of the
targets in the second scenario are shown in Figures 11(c) and 11(d).
The figures show that the entropies in the obstructed case were a little
higher than in the unobstructed case in both the human and the dog
targets, with a value above 0.05 in the human and a value above 0.2 in
the dog target. The entropy of the human target was also much lower
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Figure 10. Entropy of the echo signals’ 201 points before and after
the targets’ position for 100 points. (a) Entropy of the human target.
(b) Entropy of the dog target.
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Figure 11. Entropy of the echo signals’ 41 points before and after the
targets’ position for 20 points. (a) Entropy of the human target in the
first case. (b) Entropy of the dog target in the first case. (c) Entropy
of the human target in the second case. (d) Entropy of the dog target
in the second case.

than that of the dog target, which indicates that the echo signals of
the human targets were more ordered than those of the dog targets.
The components of the dogs’ echoes were more complex and diverse
than those of the humans.

6. CONCLUSION

This study described the use of quantitative parameters derived from
wavelet transform in the analysis of the returned signals obtained by
an UWB radar to investigate the difference between human targets
and dog targets. The wavelet entropy can detect changes in a non-
stationary signal due to the localization characteristics of the wavelet
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transform and provided information about the degree of order or
disorder associated with the reflected signal. The standard deviation
of the WE evaluated the degree of WE changes. In addition, the time
evolution of these quantifiers provided information about the dynamics
associated with the targets echo signals.

In the study, the entropies of the targets in different scenarios
were analyzed. The human’s signal exhibited a more rhythmic and
ordered behavior which is compatible with the dynamical process of
the dog’s signal in both obstructed and unobstructed scenarios. The
wavelet entropies’ characteristics of humans’ signals did not appear
to change significantly, according to the standard deviation of the
WE. The differences in entropies between humans and dogs may be
due to the structures of the different bodies. Based on the property
of electromagnetic waves, the electromagnetic wave pulses emitted
by radar are scattered from a boundary of two media with different
parameters [29]. For a target that has a complex shape, the echo UWB
radar signal consists of multipath components as the incident UWB
pulse scatters independently from different body parts at different
times with different amplitudes. This behavior is dependent on the
distance to the body part and the size, shape, and composition of the
scattering part [30]. In addition, the movement of an animal during
wakefulness increases the power of the signal at low frequencies and
produces irregular waveforms, even in a resting state and during rapid
eye movement sleep [31]. This movement may cause the complexity of
the animal’s signal, whereas the human’s movement is more ordered
due to the control of emotion and mentality. The wavelet entropy in
the obstructed case was higher compared with that in the unobstructed
case, which is related to the presence of wall clutter which increased
the signal’s complexity. As the scope of the target’s motion was not
just limited to one point, a particular range has the same WE level
as the target’s point. In addition, our findings indicate that the body
motion amplitude of the animal was smaller than that of the human.
The findings of this study facilitate the differentiation of human targets
and animal targets through the use of the UWB radar. The improved
performance of the UWB radar system allows the UWB radar to meet
the requirements of real-world applications.
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M. Schürmann, and E. Basar, “Wavelet entropy: A new tool
for analysis of short time brain electrical signals,” Journal of
Neuroscience Methods, Vol. 105, 65–75, 2001.

26. Yordanova, J., V. Kolev, O. A. Rosso, M. Schurmann,
O. W. Sakowitz, M. Ozgoren, and E. Basar, “Wavelet
entropy analysis of event-related potentials indicates modality-
independent theta dominance,” Journal of Neuroscience Methods,
Vol. 117, 99–109, 2002.

27. Al Nashash, H. A., “Wavelet entropy for subband segmentation
of EEG during injury and recovery,” Annals of Biomedical
Engineering, Vol. 31, 653–658, 2003.

28. Quiroga, R. Q., O. A. Rosso, and E. Basar, “Wavelet
entropy: A measure of order in evoked potentials,” Electr. Clin.
Neurophysiol., Vol. 49, 298–302, 1998.

29. Immoreev, I. and S. Ivashov, “Remote monitoring of human
cardio-respiratory system parameters by radar and its applica-
tions,” Ultrawideband and Ultrashort Impulse Signals, 34–38, Sev-
astopol, Ukraine, Sep. 15–19, 2008.

30. Singh, S., Q. Liang, D. Chen, and S. Li, “Sense through
wall human detection using UWB radar,” EURASI Journal on
Wireless Communications and Networking, Vol. 2011, No. 20, 1–
11, 2011.

31. Zeng, T., C. Mott, D. Mollicone, and L. D. Sanford, “Automated
determination of wakefulness and sleep in rats based on non-
invasively acquired measures of movement and respiratory
activity,” Journal of Neuroscience Methods, Vol. 204, 276–287,
2012.


