Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-19
Performance of FDTD Method Cpu Implementations for Simulation of Electromagnetic Processes
By
Progress In Electromagnetics Research, Vol. 139, 655-670, 2013
Abstract
We analyze the performance of finite-difference time-domain (FDTD) method implementations for 2D and 3D problems. Implementations in Fortran, C and C++ (with Blitz++ library) languages and performance tests on several hardware setups (AMD, Intel i5, Intel Xeon) are considered. The performance of implementations using traditional FDTD algorithm for the largest size of test problem is limited by the bandwidth of computer random-accessed memory (RAM). Our implementations are compared with a commercial simulation software package Lumerical FDTD Solutions and an open source project Meep.
Citation
Dmitry L. Markovich, Konstantin S. Ladutenko, and Pavel A. Belov, "Performance of FDTD Method Cpu Implementations for Simulation of Electromagnetic Processes," Progress In Electromagnetics Research, Vol. 139, 655-670, 2013.
doi:10.2528/PIER13031910
References

1. Kane, Y., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Okamoto, T., H. Takenaka, T. Nakamura, and T. Aoki, "Large-scale simulation of seismic-wave propagation of the 2011 Tohoku-Oki M9 earthquake," Proc. of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 349, Mar. 1-4, 2012.

3. Hallaj, I. M. and R. O. Cleveland, "FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound," J. Acoust. Soc. Am., Vol. 105, No. 5, L7-L12, 1999.
doi:10.1121/1.426776

4. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

5. Schneider, J. B., "Understanding the finite-difference time-domain method,", www.eecs.wsu.edu/~schneidj/ufdtd, 2012.

6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Inc., 685 Canton Street Nordwood, MA 02062, 2005.

7. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

8. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements - A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

10. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.

10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

11. , , , http://www.lumerical.com.

12. , , , http://www.remcom.com/xf7.
doi:10.1109/20.34321

13. , , , http://www.acceleware.com/fdtd-solvers.
doi:10.1002/jnm.1660080314

14. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687702, 2010.

15. , , , http://fdtd.kintechlab.com/ru/start.

16. , , , http://www.angorafdtd.org.
doi:10.2528/PIER11082512

17. Perlik, A. T., T. Opsahl, and A. Ta°ove, "Predicting scattering of electromagnetic fields using FDTD on a connection machine," IEEE Trans. on Magnetics, Vol. 2, No. 4, 2910-2912, 1989.
doi:10.2528/PIER10102707

18. Chew, K. C. and V. F. Fusco, "A parallel implementation of the finite difference time-domain algorithm," Int. J. Numer. Model. El., Vol. 8, 293-299, 1995.

19. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.

20. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.

21. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.

22. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.1109/ISPDC.2012.17

23. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

24. , , , http://onzafdtd.org.

25. , , , http://sourceforge.net/projects/blitz/.

26. , , , www.top500.org.

27. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.

28. Dursun, H., K. Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta, "In-core optimization of high-order stencil computations," Proc. PDPTA, 533-538, 2009.

29. Veldhuizen, T. L., "Scientific computing: C++ versus Fortran," Dr. Dobb's Journal of Software Tools, Vol. 22, No. 11, 34, 36, 38, 91, Nov. 1997.

30. , , , http://zsmith.co/bandwidth.html.

31. Zumbusch, G., "Tuning a finite difference computation for parallel vector processors," 2012 11th International Symposium on Parallel and Distributed Computing, CPS, 63-70, IEEE Press, 2012.