
Progress In Electromagnetics Research, Vol. 139, 655–670, 2013

PERFORMANCE OF FDTD METHOD CPU IMPLEMEN-
TATIONS FOR SIMULATION OF ELECTROMAGNETIC
PROCESSES

Dmitry L. Markovich1, *, Konstantin S. Ladutenko1, 2, and
Pavel A. Belov1

1St. Petersburg National Research University of Information Tech-
nologies, Mechanics and Optics, 49 Kronverskii Ave., St. Petersburg
197101, Russian Federation
2Ioffe Physical-Technical Institute of the Russian Academy of Sciences,
26 Polytekhnicheskaya Str., St. Petersburg 194021, Russian Federation

Abstract—We analyze the performance of finite-difference time-
domain (FDTD) method implementations for 2D and 3D problems.
Implementations in Fortran, C and C++ (with Blitz++ library)
languages and performance tests on several hardware setups (AMD,
Intel i5, Intel Xeon) are considered. The performance of
implementations using traditional FDTD algorithm for the largest size
of test problem is limited by the bandwidth of computer random-
accessed memory (RAM). Our implementations are compared with
a commercial simulation software package Lumerical FDTD Solutions
and an open source project Meep.

1. INTRODUCTION

Nowadays, numerical modeling is being widely used for both
engineering and research activities. The finite-difference time-domain
(FDTD) method for electromagnetic phenomena simulations was
introduced by Kane Yee in 1966 in the pioneer paper [1]. Various
modifications of the method are often used for simulations of acoustics,
seismic and earthquake studies [2], or even heat-acoustic phenomena [3]
and bio-electromagnetic problems [4].

FDTD method requires the components of magnetic and electric
field to be placed in the computational grid with half time step
shift and half spatial step shift (for magnetic field components) and

Received 19 March 2013, Accepted 18 April 2013, Scheduled 19 May 2013
* Corresponding author: Dmitry L. Markovich (dmmrkovich@gmail.com).

656 Markovich, Ladutenko, and Belov

Maxwell’s equations in differential form to be explicitly discretized.
This procedure enables to calculate the values of magnetic and electric
field components for the “next” time step using the values from
the “previous” time step. The simplest 1D case with only two
field components Ez(x, t) and Hy(x, t) results in the following update
equations [5]:

H
n+ 1

2
y

(
i +

1
2

)
=H

n− 1
2

y

(
i +

1
2

)
+

∆t

µ∆x
[En

z (i + 1)− En
z (i)] (1)

En+1
z (i)=En

z (i) +
∆t

ε∆x

[
H

n+ 1
2

y

(
i +

1
2

)
−H

n+ 1
2

y

(
i− 1

2

)]
(2)

Indices i and n enumerate spatial step and time step
correspondingly, ∆x and ∆t stand for the magnitude of steps, ε
and µ — for relative dielectric and magnetic permeability, En

z (i) is
the magnitude of the electric field z-component at t = n∆t with
spatial coordinate x = i∆x, magnetic field y-component uses the same
notations. The algorithm can be generalized for 2D and 3D cases [5, 6],
that are of particular interest for programming.

FDTD method can be also applied to a huge variety of parabolic
equations and is often used for numerical solution of wave propagation
in anisotropic [7], nonlinear [8], and dispersive [9, 10] media.

A special feature of the method is its high computational load,
that distinctly restricts its application area. At the same time, relative
simplicity of the method led to the development of a number of
commercial (Lumerical FDTD Solutions [11], XFDTD [12], Acceleware
FDTD [13]) and open source (Meep [14], EMTL [15], Angora [16])
software packages that perform computations with its help.

Comparing FDTD method implementations is usually obstructed
for a number of reasons:

• Data found in literature are usually fragmentary, especially those
related to hardware used for testing. Moreover, one can find
computer architectures that have already become extinct [17, 18].

• Different FDTD method implementations are considered, that
may or may not simulate such material properties as disper-
sion, nonlinearity, anisotropy, etc., and use various numerical
schemes [5, 6, 19–23].

• Free implementations (that can be accessed via the Internet) are
usually inapplicable for simulation of complicated tasks and suffer
from inconsistent documentation.

• Commercial packages do not provide access to the source code and
hide details about the method implementation, that are important
for comparison.

Progress In Electromagnetics Research, Vol. 139, 2013 657

The need for detailed and fair comparison led to the development
of several FDTD implementations by the authors [24].

2. FORMULATION OF THE PROBLEM

In this paper we compared the performance of implementations
simulating a bare-bones test problem: electromagnetic wave
propagation in anisotropic media with perfect reflecting walls. This
allows to fully evaluate the efficiency of computational core of FDTD
method implementation.

To develop such an implementation, one has to choose a
programming language and a target hardware setup. We developed
several implementations of FDTD method computational core
in Fortran, C, and C++ (using Blitz++ library) [25]. The
implementations of 2D and 3D cases were tested on Intel i5-2400, AMD
Phenom II X4 965 and Intel Xeon e5345 processors.

Intel and AMD processors were chosen for testing due to the
widely spread x86 architecture. The abovementioned programming
languages possess high level of portability, that’s why any of our
developed FDTD method implementations can be relatively easy
ported to SPARC and Power architectures, that are present in TOP500
supercomputer list [26]. Another popular solution is specialized
accelerators (for example, NVidia Tesla and Intel Xeon Phi), that
are capable of reducing execution time dramatically. A number of
studies [10, 27] shows FDTD method GPU implementation usage for
various problems, but it requires more complicated programming and
therefore is not considered in this article.

3. FDTD METHOD IMPLEMENTATION
ARCHITECTURE

There are several approaches to implement FDTD method. One option
is to store as little data as possible in the computer memory (according
to memory consumption values this approach is used by Lumerical
FDTD Solutions [11]). It requires storage of at least six numbers (three
magnetic field components and three electric field components) for each
of the grid points. Tensor components of material parameters such as
magnetic and electric permeabilities, conductivities, etc are defined
parametrically and are computed many times for every grid point at
every time step. In case of an object with complex geometry features,
these additional calculations may significantly increase computational
load on the system.

658 Markovich, Ladutenko, and Belov

Another option is a single-time evaluation of all the necessary
components of material parameter tensors for every grid point and
storing the result in computer memory (this approach is used by
MEEP [14]). In this case, the computational load is reduced, but
the required amount of memory is increased. For example, for the
problem of electromagnetic wave propagation in dielectric medium,
only a single material parameter is required — electric permeability
value, which results in additional 15% memory consumption. Problems
with complex media may require up to several times more memory
consumption. In 3D case, the amount of memory required for
computing is cubically proportional to the model spatial size, and
that’s why the maximum model size is limited by the amount of
computer RAM. Keeping in mind that additional memory consumption
preserves time needed for stepping when increasing the complexity of
model geometry, this option was chosen for developing FDTD method
implementations. Moreover, this approach allows to separate model
parameters setting procedure and computational core programming
and makes the process of developing easier.

Actually, FDTD method programming is just executing a number
of basic mathematical operations such as addition, subtraction,
multiplication, and division on arrays, that contain the magnitudes
of electric and magnetic field components and material parameters.
Note that the division operation should be used as rarely as possible,
because it takes several times longer than other operations and one
should perform “zero division” error check.

Modern processors have up to three levels of cache. The first
level of cache has the smallest capacity, but the highest data access
speed. Capacity of the second cache level is higher than capacity
of the first one, but its speed is lower, and so on. Putting data
components accurately in computer memory significantly increases the
performance of FDTD method due to the reduction of cache miss rate
(cache miss occurs when the data being addressed is not located in
cache). A standard way to enhance the performance of computational
algorithms by optimizing the cache usage is array cache blocking
technique, that increases the locality of data used for computations.
The next optimization step is increasing the efficiency of register
usage [28]. Register blocking for high-order accurate FDTD method
implementations is a relatively easy-to-realize technique, however, it
failed to increase the performance of our implementations sufficiently.

3.1. Fortran Implementation

Fortran basic syntax enables iterating over chosen array slice without
loops for incrementing spatial indices. Listing 1 shows code fragment

Progress In Electromagnetics Research, Vol. 139, 2013 659

of Hx update equation in 2D case. The source code was compiled using
-O2 optimization flag of gfortran 4.4 compiler.

1 data1 (1:size ,1:size ,Hx) = data0 (1:size ,1:size ,Chxh) *

2 data0 (1:size ,1:size ,Hx) - data0 (1:size ,1:size ,Chxe) *

3 (data0 (1:size ,2:(size +1),Ez) - data0 (1:size ,1:size ,Ez))

Listing 1. Fortran code fragment of Hx update equation in 2D case.

A special feature of Fortran is columnwise memory layout of
matrix elements, or, generalizing for multidimensional arrays, the most
rapidly changing index within nested loops is the first index of the
array. Incrementing the first array index one gets a continuous layout
of array elements in memory. In the above implementation arrays data0

and data1 are used for n∆t and (n + 1)∆t moments of time, physical
quantities are addressed via a number of enumerated constants (Hx, Ez,
Chxh and Hx). Correct addressing is pretty important, because changing
its order from data(x,y,F) to data(F,x,y) results in up to several times
performance reduction. Alternatively, one can use separate arrays for
every required physical quantity, but in this case data layout in memory
may become fragmentary.

3.2. C++ Implementation Using Blitz++

Blitz++ library provides a lot of useful functions to operate on arrays
effectively [29]. Using template metaprogramming technique, Blitz++
does not waste processor resources on returning temporary results
when operating on objects in run time, all substitutions are done at
compile time. In addition, it also ensures good cache use with the help
of Hilbert space filling curve array traverse order [30]. C++ source
codes were compiled using -O2 and ftemplate-depth-30 optimization flags
of g++ 4.4 compiler.

There are two ways of FDTD method implementation in Blitz++:
using Range or Stencil functions. Range generates a range of integers that
act like an array index within a loop, performing operations on array
elements, see Listing 2 for details. Range enables to program finite-
difference equations in almost explicit “mathematical” form, whereas

1 const blitz:: Range i(1,length_x);

2 const blitz:: Range j(1,length_y);

3 data1(kHx ,i,j) = data0(kChxh ,i,j) * data0(kHx ,i,j) -

4 data0(kChxe ,i,j) * (data0(kEz ,i,j+1) - data0(kEz ,i,j));

Listing 2. C++ code fragment of Hx update equation in 2D case
using Range.

660 Markovich, Ladutenko, and Belov

defining index increment range lightens the code.
Stencil is a more complicated operation that does not use explicit

indexing. Instead, Stencil automatically determines the range of
indices, analyzing the dimensions of its array arguments. A small
drawback of this function is the restriction only to 3D and lower-
dimension arrays, however one can easily tackle this issue. Listing 3
shows the code fragment of Hx update equation. In order to use
Stencil, one has to define and describe the function (in this case
update_field_Hx) using special Blitz++ macros and then call it in the
proper place with applyStencil(). Note again that when using Stencil

one has no access to indices range, and this may cause array boundaries
determine algorithm to malfunction, especially in case of complex
definitions. Nevertheless, on AMD and Intel i5 setups Stencil computes
2D problems significantly faster than Range.

1 BZ_DECLARE_STENCIL5(update_field_Hx , kHx_next , kHx , kChxh ,

2 kChxe , kEz)

3 kHx_next = kChxh * kHx - kChxe * (kEz(0, 1) - kEz);

4 BZ_END_STENCIL_WITH_SHAPE(blitz ::shape(0, 0),

5 blitz ::shape(0, 1))

6 ...

7 applyStencil(update_field_Hx (), kHx_next ,

8 kHx , kChxh , kChxe , kEz);

Listing 3. C++ code fragment of Hx update equation in 2D case
using Stencil.

3.3. C Implementation

C code fragment of Hx update equation in 2D case is shown in Listing 4.
Source code was compiled using -O3 -fstrict-aliasing optimizing flags
of gcc 4.4 compiler. This implementation turned out to have the
highest potential for optimization, that is, however, rather tricky to
realize. C implementation can be made fast only provided that the
source code is scrupulously optimized by the programmer. Special
code optimizations will be described further.

1 for (int i = x1; i <= x2; ++i) {

2 for (int j = y1; j <= y2; ++j) {

3 data1[kHx][i][j] = data0[kChxh][i][j] *

4 data0[kHx][i][j] - data0[kChxe][i][j] *

5 (data0[kEz][i][j+1] - data0[kEz][i][j]);}}

Listing 4. C code fragment of Hx update equation in 2D case without
optimizations.

Progress In Electromagnetics Research, Vol. 139, 2013 661

Unlike Fortran, C’s most rapidly changing array index is the
last one. In the above-mentioned code fragment data arrays
have three indices. However, from the computer’s point of view,
it is just a continuous layout of elements in memory, i.e., a 1D
array. Consequently, it is possible to exclude all indices except one,
redefining it like kHx*size_xy + i*size_y + j, see Listing 5. Analogous
representation is applicable to 3D case, reducing four indices to a single
one. It allows to increase performance by a few percent because of a
simpler array indexation.

1 for (int i = x1; i <= x2; ++i) {

2 for (int j = y1; j <= y2; ++j) {

3 data1[kHx * size_xy + i * size_y + j] =

4 data0[kChxh * size_xy + i * size_y + j] *

5 data0[kHx * size_xy + i * size_y + j] -

6 data0[kChxe * size_xy + i * size_y + j] *

7 (data0[kEz * size_xy + i * size_y + (j + 1)] -

8 data0[kEz * size_xy + i * size_y + j]);}}

Listing 5. C code fragment of Hx update equation in 2D case with
pointer arithmetics.

The next trick presented in Listing 6, is loop unroll. It helps
the compiler to optimize the list of instructions and reduces the
number of conditional statements to be checked within a loop. The
technique is the following: update equations are copied several times
within the innermost loop with incremented loop index, whereas
the loop increment is adjusted to process all the elements of the
array. It is no use to make more than four copies due to
special features of x86 microarchitecture. Our tests showed that
significant increase in performance can be obtained using only one
copy of update equation. Additional performance increase can be
provided by separating the innermost loop for each field component
update equation.Corresponding C code fragment with all mentioned
optimizations is presented in Listing 6.

Concluding the section it is worth mentioning that C code
optimizations made this implementation much faster than non-
optimized version. For example, on AMD setup optimizations granted
50% performance increase.

662 Markovich, Ladutenko, and Belov

1 for (int i = x1; i <= x2; ++i) {

2 for (int j = y1; j <= y2; j += 2) {

3 data1[kHx * size_xy + i * size_y + j] =

4 data0[kChxh * size_xy + i * size_y + j] *

5 data0[kHx * size_xy + i * size_y + j] -

6 data0[kChxe * size_xy + i * size_y + j] *

7 (data0[kEz * size_xy + i * size_y + (j + 1)] -

8 data0[kEz * size_xy + i * size_y + j]);

9 data1[kHx * size_xy + i * size_y + j + 1] =

10 data0[kChxh * size_xy + i * size_y + j + 1] *

11 data0[kHx * size_xy + i * size_y + j + 1] -

12 data0[kChxe * size_xy + i * size_y + j + 1] *

13 (data0[kEz * size_xy + i * size_y + (j + 1) + 1] -

14 data0[kEz * size_xy + i * size_y + j + 1]);}

15 for (int j = y1; j <= y2; j += 2) {

16 data1[kHy * size_xy + i * size_y + j] = ...}

17 ...}

Listing 6. C code fragment of Hx update equation in 2D case with
pointer arithmetics and innermost loop unroll.

4. COMPARING THE PERFORMANCE OF IMPLEMEN-
TATIONS ON DIFFERENT HARDWARE SETUPS

Performance of different implementations has to be evaluated on a
number of test problems with specified launch parameters in order
to understand if any of them can outrace the others. To accomplish
that, one has to measure the stepping time of electric and magnetic
fields update algorithms of a problem with specified parameters —
number of time steps and grid spatial size. It is convenient to introduce
parameters max_size and max_steps and fixate the “general” task size
(C2D = max_size2 × max_steps, C3D = max_size3 × max_steps) and then alter
parameters, retaining the value of C. For further convenience, stepping
time can be divided by an arbitrary value of grid points, in this
contribution — by million grid points.

Implementations were tested on three different processors (CPU).
Table 1 shows their specification, values of sequential memory read and
write speed were obtained using bandwidth64 [30] test.

Stepping times for all implementations on all setups are presented
in Fig. 1. For the majority of tasks, C and Fortran implementations are
the best. Blitz++ implementation low performance on small spatial
sizes is easily explainable — using library classes and Hilbert space
filling curve traversal order takes dramatically long time compared to
the acceleration it provides. However, with the growth of arrays’ size,
especially in 3D case, improvement of data locality and cache usage

Progress In Electromagnetics Research, Vol. 139, 2013 663

Table 1. Specification of processors and measured performance of
memory (read-write).

Processor RAMr
Speed, [GB/s]
read - write

AMD Phenom II X4 965 3.4 GHz DDR2-667 6.74 - 3.37
Intel Core i5-2400 3.1 GHz DDR3-1333 14.27 - 8.61
Intel Xeon e5345 2.3GHz DDR2-667 3.6 - 1.92

provided by Blitz++ optimizations results in enhanced performance
that allows the implementation using Range compete with others and
even outrace them.

Due to different memory bandwidths for AMD and Intel
(see Table 1) FDTD method implementations’ performance showed
approximately two times lower value on AMD processor comparing
to Intel i5, whereas Linpack performance test gives AMD credit for
performance.

Within every time and every spatial step, FDTD method’s
computational core performs 4 memory write and 10 memory read
operations for 2D algorithm, 7 and 19 operations for 3D algorithm
correspondingly, cache operations excluded. Using the general value of
algorithm iterations and practically obtained sequential memory read
and write speeds it is possible to evaluate problem stepping time and
compare it to the obtained data. Results are presented in Table 2.

Table 2. Efficiency calculation for our best result implementations on
different setups.

Problem size
t theory/practice, [s] Efficiency, %

AMD i5 Xeon AMD i5 Xeon
20482 × 100 8.4/11.3 3.6/3.8 15.2/15.6 74 96 97
1283 × 100 7.7/11.2 3.4/4.0 13.9/17.0 68 85 82

Performance, obtained with the use of vector extension (single
instruction multiple data or SIMD) SSE and AVX processor
instructions, also turns out to be limited by memory bandwidth.
Additional performance data for Intel Core i5-2400 using SSE is
depicted in Fig. 1(d) with orange curve, AVX results are pretty
much the same. Maximum acceleration, compared to non-SIMD
implementation, does not exceed 16%, whereas when using SSE or
AVX processor arithmetic performance for double precision (64b)

664 Markovich, Ladutenko, and Belov

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10 12 14 16 18 20 22

t,
[s

]

2D, log 2 (N)

Stencil Range Fortran C
AMD

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 8 10 12 14 16 18 20 22

t ,
[s

]

3D, log 2 (N)

Stencil Range Fortran C
AMD

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 12 14 16 18 20 22

t,
[s

]

2D, log 2 (N)

Stencil Range Fortran C
i5

0

 0.01

 0.02

 0.03

 0.04

 0.05

 8 10 12 14 16 18 20 22

t,
[s

]

3D, log 2 (N)

SSE

Stencil Range Fortran C
i5

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 12 14 16 18 20 22

t,
[s

]

2D, log 2 (N)

Stencil Range Fortran C
Xeon

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 8 10 12 14 16 18 20 22

t,
[s

]

3D, log 2 (N)

Stencil Range Fortran C
Xeon

(a) (b)

(c) (d)

(e) (f)

Figure 1. Performance comparison of 2D and 3D algorithms
on (a), (b) AMD Phenom II X4 965, (c), (d) Intel Core i5-2400, and
(e), (f) Intel Xeon e5345. t — single iteration stepping time for 106

grid points, N — general amount of spatial grid points.

computations it becomes 2 and 4 times higher, correspondingly.
Memory bandwidth efficiency usage for this case slightly exceeds 85%.

The interrelation between processor performance, memory

Progress In Electromagnetics Research, Vol. 139, 2013 665

bandwidth and FDTD method implementation efficiency is presented
in Table 3. Specification of the computer with Intel i5-2400 processor
was altered in BIOS and FDTD method. C implementation was
tested on every configuration along with sequential memory read
and write speed test and Intel Linpack test. Namely, processor
frequency and memory bandwidth were tuned from 3.1 GHz to
2.6GHz and from 1333MHz to 800MHz correspondingly. Relative
performance variances were calculated with respect to the quickest
configuration. The data obtained proved once again that FDTD
method implementation performance strongly depends on computer
memory bandwidth, whereas processor raw computational power only
slightly affects it.

From the programmer’s point of view, 2D and 3D FDTD
algorithms differ only in the number of variables used. Both cases show
about 90% memory bandwidth usage efficiency for Intel i5. This means
that for other FDTD method implementations using the same amount
of variables, similar memory bandwidth usage efficiency level can also
be accessible. For example, it is reported in [10] that computing a
1283 × 200 isotropic dispersive FDTD problem using GPU Nvidia
Tesla C2050 took 3.24 seconds. Analogous CPU implementation
will store material parameters of air and gold nanosphere in cache

Table 3. Interrelation between CPU frequency and memory
bandwidth, stepping time for 1283 × 100 of C implementation with
SSE, measured sequential read from RAM speed and Linpack CPU
performance test results.

Memory and processor settings
RAM high high low low
CPU high low low high

Absolute values
Stepping time, [s] 3.74 4.02 5.78 5.7
RAM read, [GB/s] 13.9 13.5 9.23 9.46

CPU frequency, [GHz] 3.1 2.6 2.6 3.1
Linpack, [Gflops] 87.5 74.5 71.1 82.1

Relative variance, %
Stepping time 0 −7 −35 −34

RAM read 0 −3 −33 −32
CPU frequency 0 −16 −16 −0

Linpack 0 −15 −19 −6

666 Markovich, Ladutenko, and Belov

and will require as much memory read and write operations as our
implementation for anisotropic case. Under such restrictions, GPU
implementation will perform two to three times faster than ours.

Concluding the section it is worth noticing once again that the
major influence on FDTD method implementation stepping time is
made by computer memory bandwidth. Consequently, the best usage
of implementations is possible only on setups with maximum memory
subsystem bandwidth, like multichannel high-frequency RAM.

5. COMPARISON WITH MEEP AND LUMERICAL
FDTD SOLUTIONS

Let us compare our C implementation (Listing 6) to similar software
packages. In order to make comparison as clear as possible, it is desired
to test a specified problem using a chosen setup.

MEEP [14] is a well-known open source FDTD method
implementation, an ideal candidate for comparison. Test problem
was simplified to wave propagation in isotropic dielectric media with
perfect reflecting walls, and stepping time of implementations was
compared for maximum spatial sizes in 2D and 3D cases, see Table 4
for details. Our implementations proved to be 1.6 and 1.7 times faster
correspondingly.

Table 4. Comparison of C implementation with Meep software
package on AMD.

Problem spatial size Meep C implementation
20482 × 100 11.15 s 7.09 s
1283 × 100 12.44 s 7.22 s

The comparison of our C implementation with commercial
software simulation package Lumerical FDTD Solutions [11] was also
made (Table 5). Stepping time of parallel computing using four
cores was also checked. Our C implementation was parallelized
with the help of OpenMP technology for the outermost loop for

using #pragma omp parallel for directive. For single core computations,
Lumerical FDTD Solutions shows similar performance for maximum
spatial size and 1.7–2.2 times lower performance for smaller sizes. In
the parallel four cores regime Lumerical FDTD Solutions shows 1.1
times faster stepping time for maximum spatial size and 3.3 slower for
minimum size.

In parallel four cores regime both implementations show similar
acceleration less than 25% with respect to stepping time of the largest

Progress In Electromagnetics Research, Vol. 139, 2013 667

Table 5. Comparison of C implementation with Lumerical FDTD
Solutions on Intel i5.

Problem spatial size Lumerical FDTD C implementation
4 cores 1 core 4 cores 1 core

1283 × 1000 21 s 26 s 24 s 26 s
643 × 8000 29 s 42 s 28 s 25 s
323 × 64000 29 s 50 s 8.8 s 23 s

problem spatial size. This proves one more time that the performance
of FDTD method implementations is limited by computer memory
bandwidth.

In parallel regime the problem is spatially decomposed and each
core executes a part of computations. Each core of Intel i5-2400
processor has personal L1 and L2 cache memory and therefore the
overall amount of used cache is increased. This results in enhanced
performance of our implementation for small problem spatial sizes,
that outraces Lumerical FDTD Solutions 2.6 times.

Lumerical FDTD Solutions low performance for small problem
spatial sizes and a little higher performance for maximum problem
spatial size is caused by the fact that the package uses the amount
of memory required only for storing the electric and magnetic field
components. Consequently, it is necessary to compute dielectric
permeability for every grid point within every algorithm step. Our
implementation does only single computation and stores the value
in RAM, which results in additional memory read operations when
updating field components and proportional reduction in performance
for large problem spatial sizes. For small problem spatial sizes, when
overall performance is limited to processor performance, additional
calculations in Lumerical FDTD Solutions cause dramatical stepping
time increase with respect to our implementation.

6. CONCLUSION

In this paper we made the comparison of FDTD method implemen-
tations in Fortran, C and C++ programming languages. The imple-
mentations were tested for 2D and 3D electromagnetic problems on
AMD Phenom II X4 965, Intel Core i5-2400 and Intel Xeon e5345. Ob-
tained results showed that C implementation is several percent faster
than Fortran for the majority of problem spatial task sizes, and C++
implementation is much slower on small spatial sizes, but rapidly im-
proves performance with spatial size growth.

668 Markovich, Ladutenko, and Belov

Performance of implementations for maximum problem spatial
size changes in several times for different setups, whereas the
arithmetical performance of tested processors differs a lot less. This
occurs because of the limitation by RAM bandwidth. Calculations
and tests showed that our best implementation uses up to 90% of
bandwidth limitation, which means that further improvement of source
code is ineffective. It is only possible to improve performance using
setups with better RAM bandwidth.

Theoretically, it is possible to program a FDTD method
implementation that is capable of providing up to 40 times better
performance. Our C implementation uses only about 10% of Intel
i5-2400 single core computational capacity and about 2.5% of overall
CPU computational capacity. To increase this percentage, FDTD
method implementations have to be modified to reduce the amount of
RAM addressing operations dramatically. Such modifications, called
time-skewing, were presented in [31] for 1D parabolic equation finite-
difference scheme. About 90% of overall CPU computational capacity
usage was reported to had been reached.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education and Science of
Russian Federation, projects 11.G34.31.0020 and 14.B37.21.0942, and
Russian Foundation for Basic Research (RFBR).

REFERENCES

1. Kane, Y., “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media,” IEEE
Transactions on Antennas and Propagation, Vol. 14, 302–307,
1966.

2. Okamoto, T., H. Takenaka, T. Nakamura, and T. Aoki, “Large-
scale simulation of seismic-wave propagation of the 2011 Tohoku-
Oki M9 earthquake,” Proc. of the International Symposium on
Engineering Lessons Learned from the 2011 Great East Japan
Earthquake, 349, Mar. 1–4, 2012.

3. Hallaj, I. M. and R. O. Cleveland, “FDTD simulation of
finite-amplitude pressure and temperature fields for biomedical
ultrasound,” J. Acoust. Soc. Am., Vol. 105, No. 5, L7–L12, 1999.

4. Kong, L.-Y., J. Wang, and W.-Y. Yin, “A novel dielectric
conformal FDTD method for computing SAR distribution of the
human body in a metallic cabin illuminated by an intentional

Progress In Electromagnetics Research, Vol. 139, 2013 669

electromagnetic pulse (IEMP),” Progress In Electromagnetics
Research, Vol. 126, 355–373, 2012.

5. Schneider, J. B., “Understanding the finite-difference time-domain
method,” www.eecs.wsu.edu/∼schneidj/ufdtd, 2012.

6. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-difference Time-domain Method, Artech House, Inc.,
685 Canton Street Nordwood, MA 02062, 2005.

7. Wang, M.-Y., J. Xu, J. Wu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge,
“FDTD study on wave propagation in layered structures with
biaxial anisotropic metamaterials,” Progress In Electromagnetics
Research, Vol. 81, 253–265, 2008.

8. Kung, F. and H. T. Chuah, “Stability of classical finite-difference
time-domain (FDTD) formulation with nonlinear elements — A
new perspective,” Progress In Electromagnetics Research, Vol. 42,
49–89, 2003.

9. Chun, K., H. Kim, H. Kim, and Y. Chung, “PLRC and ADE
implementations of Drude-critical point dispersive model for the
FDTD method,” Progress In Electromagnetics Research, Vol. 135,
373–390, 2013.

10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li,
and T. G. G. Hung, “Implementation of the FDTD method
based on Lorentz-Drude dispersive model on GPU for plasmonics
applications,” Progress In Electromagnetics Research, Vol. 116,
441–456, 2011.

11. http://www.lumerical.com.
12. http://www.remcom.com/xf7.
13. http://www.acceleware.com/fdtd-solvers.
14. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel,

J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-
software package for electromagnetic simulations by the FDTD
method,” Computer Physics Communications, Vol. 181, 687702,
2010.

15. http://fdtd.kintechlab.com/ru/start.
16. http://www.angorafdtd.org.
17. Perlik, A. T., T. Opsahl, and A. Taflove, “Predicting scattering

of electromagnetic fields using FDTD on a connection machine,”
IEEE Trans. on Magnetics, Vol. 2, No. 4. 2910–2912, 1989.

18. Chew, K. C. and V. F. Fusco, “A parallel implementation of the
finite difference time-domain algorithm,” Int. J. Numer. Model.
El., Vol. 8. 293–299, 1995.

19. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, “A

670 Markovich, Ladutenko, and Belov

novel 3-D weakly conditionally stable FDTD algorithm,” Progress
In Electromagnetics Research, Vol. 130, 525–540, 2012.

20. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, “A hybrid
implicit-explicit spectral FDTD scheme for oblique incidence
problems on periodic structures,” Progress In Electromagnetics
Research, Vol. 128, 153–170, 2012.

21. Kong, Y.-D. and Q.-X. Chu, “Reduction of numerical dispersion
of the six-stages split-step unconditionally-stable FDTD method
with controlling parameters,” Progress In Electromagnetics
Research, Vol. 122, 175–196, 2012.

22. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Baǧci, “An FFT-
accelerated FDTD scheme with exact absorbing conditions for
characterizing axially symmetric resonant structures,” Progress In
Electromagnetics Research, Vol. 111, 331–364, 2011.

23. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, “Evaluation
of electromagnetic fields associated with inclined lightning
channel using second order FDTD-hybrid methods,” Progress In
Electromagnetics Research, Vol. 117, 209–236, 2011.

24. http://onzafdtd.org.
25. http://sourceforge.net/projects/blitz/.
26. www.top500.org.
27. Stefanski, T. P., “Implementation of FDTD-compatible Green’s

function on heterogeneous CPU-GPU parallel processing system,”
Progress In Electromagnetics Research, Vol. 135, 297–316, 2013.

28. Dursun, H., K. Nomura, W. Wang, M. Kunaseth, L. Peng,
R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta, “In-core
optimization of high-order stencil computations,” Proc. PDPTA,
533–538, 2009.

29. Veldhuizen, T. L., “Scientific computing: C++ versus Fortran,”
Dr. Dobb’s Journal of Software Tools, Vol. 22, No. 11, 34, 36, 38,
91, Nov. 1997.

30. http://zsmith.co/bandwidth.html.
31. Zumbusch, G., “Tuning a finite difference computation for

parallel vector processors,” 2012 11th International Symposium
on Parallel and Distributed Computing, CPS, 63–70, IEEE Press,
2012.

