Vol. 145
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-03-01
A Rapid Accurate Technique to Calculate the Group Delay, Dispersion and Dispersion Slope of Arbitrary Radial Refractive Index Profile Weakly-Guiding Optical Fibers
By
Progress In Electromagnetics Research, Vol. 145, 93-113, 2014
Abstract
This paper introduces a new numerical method to calculate the group delay, chromatic dispersion and dispersion slope of weakly-guiding optical fibers with arbitrary radial refractive index profiles. It is based on the analytic differentiation of the propagation coefficient up to the third order. The simulation results are compared to experimental data, with those calculated by other approaches and exact data where possible. Due to the analytical differentiation of the matrix equation, the method is more accurate compared to other approaches, it is also much faster than numerical differentiation as allows avoiding repeated solution of the eigenvalue problem to calculate the derivatives of the propagation coefficient. The precision of the method is limited only by the approximation errors of the mode solver. The Galerkin method with Laguerre-Gauss basis functions is used to determine the propagation coefficients of weakly-guiding structures. The new method enables fiber manufacturers to rapidly design dispersion characteristics of graded index, step index, single- and multiple-clad fibers, as well as few-mode and bend insensitive fibers.
Citation
Raushan Mussina, David R. Selviah, F. Fernandez, Antonius G. Tijhuis, and Bastiaan P. de Hon, "A Rapid Accurate Technique to Calculate the Group Delay, Dispersion and Dispersion Slope of Arbitrary Radial Refractive Index Profile Weakly-Guiding Optical Fibers," Progress In Electromagnetics Research, Vol. 145, 93-113, 2014.
doi:10.2528/PIER13031203
References

1. Sammut, R. A., "Analysis of approximations for the mode dispersion in monomode fibres," Electron. Lett., Vol. 15, No. 19, 590-591, 1979.
doi:10.1049/el:19790424

2. Sharma, A. and S. Banerjee, "Chromatic dispersion in single mode fibers with arbitrary index profiles: A simple method for exact numerical evaluation," J. Lightwave Technol., Vol. 7, No. 12, 1919-1923, 1989.
doi:10.1109/50.41610

3. Kim, J. and D. Y. Kim, "An efficient dispersion calculation method for axially symmetric optical fibers," Fiber Integrated Opt., Vol. 21, No. 1, 13-29, 2002.
doi:10.1080/014680302753339376

4. Li, Q. Y., "Propagation characteristics of single-mode optical fibers with arbitrary refractive-index profile: The finite quadratic element approach," J. Lightwave Technol., Vol. 9, No. 1, 22-26, 1991.
doi:10.1109/50.64919

5. Boucouvalas, A. C. and X. Qian, "Mode dispersion and delay characteristics of optical waveguides using equivalent TL circuits," IEEE J. Quantum Electron., Vol. 41, No. 7, 951-957, 2005.
doi:10.1109/JQE.2005.848918

6. Lin, H. Y., R. B. Wu, and H. C. Chang, "An efficient algorithm for determining the dispersion characteristics of single-mode optical fibers," J. Lightwave Technol., Vol. 10, No. 6, 705-711, 1992.
doi:10.1109/50.143068

7. Hermann, W. and D. U. Wiechert, "Refractive-index of doped and undoped PCVD bulk silica," Mater. Res. Bull., Vol. 24, No. 9, 1083-1097, 1989.
doi:10.1016/0025-5408(89)90065-2

8. Sharma, E. K., A. Sharma, and I. C. Goyal, "Propagation characteristics of single-mode optical fibers with arbitrary index profiles: A simple numerical approach," IEEE J. Quantum Electron.,, Vol. 18, No. 10, 1484-1489, 1982.
doi:10.1109/JQE.1982.1071412

9. South, C. R., "Total dispersion in step-index monomode fibres," Electron. Lett., Vol. 15, No. 13, 394-395, 1979.
doi:10.1049/el:19790284

10. Mussina, R., B. P. de Hon, R. W. Smink, and A. G. Tijhuis, "Modal modeling strategies for the design of optical fibers," Proceedings of Annual Symposium of IEEE/LEOS Benelux Chapter, 199-202, University of Twente, The Netherlands, November 27-28, 2008.

11. Mussina, R., D. R. Selviah, F. A. Fernandez, A. G. Tijhuis, and B. P. de Hon, "Numerical modeling method for the dispersion characteristics of single-mode and multimode weakly-guiding optical fibers with arbitrary radial refractive index profiles," Proc. SPIE, Vol. 8619, Physics and Simulation of Optoelectronic Devices XXI, 86191R, March 14, 2013; doi:10.1117/12.2002804; http://dx.doi.org/10.1117/12.2002804.

12. Thyagarajan, K., R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett., Vol. 8, No. 11, 1510-1512, 1996.
doi:10.1109/68.541566

13. Thyagarajan, K. and B. P. Pal, "Modeling dispersion in optical fibers: Applications to dispersion tailoring and dispersion compensation," " J. Opt. Fiber Commun. Rep., Vol. 4, No. 3, 173-213, 2007.
doi:10.1007/s10297-006-0076-2

14. Cohen, L. G. and W. L. Mammel, "Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm-1.65 μm wavelength range," Electron. Lett., Vol. 18, No. 24, 1023-1024, 1982..
doi:10.1049/el:19820701

15. Cohen, L. G., W. L. Mammel, and S. Limush, "Tailoring the shapes of dispersion spectra to control bandwidths in single-mode fibers," Opt. Lett., Vol. 7, No. 4, 183-185, 1982.
doi:10.1364/OL.7.000183

16. Etzkorn, H. and W. E. Heinlein, "Low-dispersion single-mode silica fibre with undoped core and three F-doped claddings," Electron. Lett., Vol. 20, No. 10, 423-424, 1984.
doi:10.1049/el:19840293

17. Smink, R. W., B. P. de Hon, M. Bingle, R. Mussina, and A. G. Tijhuis, "Refractive index profile optimisation for the design of optical fibres," Opt. Quant. Electron., Vol. 40, No. 11-12, SPEC. ISS, 837-852, 2008.

18. Correia, D., V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, "Genetic-algorithm and finite-element approach to the synthesis of dispersion-flattened fiber," Microw. Opt. Technol. Lett., Vol. 31, No. 4, 245-248, 2001.
doi:10.1002/mop.10000

19. Wu, M. S., M. S. Lee, and W. H. Tsai, "Variational analysis of single-mode graded-core W-fibers," J. Lightwave Technol., Vol. 14, No. 1, 121, 1996.
doi:10.1109/50.476145

20. Zhang, X. P. and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol., Vol. 37, No. 2, 167-172, 2005.
doi:10.1016/j.optlastec.2004.03.006

21. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multi-clad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003

22. Rostami, A. and S. Makouei, "Modified W-type single-mode optical fiber design with ultra-low, flattened chromatic dispersion and ultra-high effective area for high bit rate long haul communications," Progress In Electromagnetics Research C, Vol. 12, 79-92, 2010.
doi:10.2528/PIERC09090603

23. Hooda, B. and V. Rastogi, "Segmented-core single mode optical fiber with ultra-large-effective-area, low dispersion slope and °attened dispersion for DWDM optical communication systems," Progress In Electromagnetics Research B, Vol. 51, 157-175, 2013.
doi:10.2528/PIERB13032206

24. Sharma, A. and J. P. Meunier, "On the scalar modal analysis of optical waveguides using approximate methods," Opt. Commun., Vol. 281, No. 4, 592-599, 2008.
doi:10.1016/j.optcom.2007.10.016

25. Meunier, J. P., J. Pigeon, and J. N. Massot, "A general approach to the numerical determination of modal propagation constants and field distributions of optical fibres," Opt. Quant. Electron., Vol. 13, No. 1, 71-83, 1981.
doi:10.1007/BF00620032

26. Georg, O., "Use of the orthogonal system of Laguerre-Gaussian functions in the theory of circularly symmetric optical waveguides," Appl. Optics, Vol. 21, No. 1, 141-146, 1982.
doi:10.1364/AO.21.000141

27. Okamoto, K. and T. Okoshi, "Analysis of wave propagation in optical fibers having core with alpha-power refractive-index distribution and uniform cladding," IEEE Trans. on Microw. and Theory, Vol. 24, No. 7, 416-421, 1976.
doi:10.1109/TMTT.1976.1128869

28. Meunier, J. P., J. Pigeon, and J. N. Massot, "A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides," Opt. Quant. Electron., Vol. 15, 77-85, 1983.
doi:10.1007/BF00620236

29. Weisshaar, A., J. Li, R. L. Gallawa, and I. C. Goyal, "Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin's method with Hermite-Gauss basis functions," J. Lightwave Technol., Vol. 13, No. 8, 1795-1800, 1995.
doi:10.1109/50.405326

30. Wang, Z. H., H. Zhang, and J. P. Meunier, "Improved Ritz-Galerkin method for field distribution of graded-index optical fibers," Microw. Opt. Technol. Lett., Vol. 37, 433-436, 2003.
doi:10.1002/mop.10941

31. Gallawa, R. L., I. C. Goyal, Y. Tu, and A. K. Ghatak, "Optical waveguide modes: An approximate solution using Galerkin's method with Hermite-Gauss basis functions," IEEE J. Quantum Electron., Vol. 27, No. 3, 518-522, 1991.
doi:10.1109/3.81357

32. Rasmussen, T., J. H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, and K. Rottwitt, "Detailed comparison of two approximate methods for the solution of the scalar wave-equation for a rectangular optical wave-guide," J. Lightwave Technol., Vol. 11, No. 3, 429-433, 1993.
doi:10.1109/50.219576

33. Barai, S. and A. Sharma, "Wavelet-Galerkin solver for the analysis of optical waveguides," J. Opt. Soc. Am. A, Vol. 26, No. 4, 931-937, 2009.
doi:10.1364/JOSAA.26.000931

34. Erteza, I. and J. W. Goodman, "A scalar variational analysis of rectangular dielectric waveguides using Hermite-Gaussian modal approximations," J. Lightwave Technol., Vol. 13, No. 3, 493-506, 1995.
doi:10.1109/50.372447

35. Meunier, J. P. and S. I. Hosain, "An accurate splice loss analysis for single-mode graded-index fibers with mismatched parameters," J. Lightwave Technol., Vol. 10, No. 11, 1521-1526, 1992.
doi:10.1109/50.184887

36. Silvestre, E., T. Pinheiro-Ortega, P. Andres, J. J. Miret, and A. Ortigosa-Blanch, "Analytical evaluation of chromatic dispersion in photonic crystal fibers," Opt. Lett., Vol. 30, No. 5, 453-455, 2005.
doi:10.1364/OL.30.000453

37. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London, 1983.

28. Wu, B. S., Z. H. Xu, and Z. G. Li, "A note on computing eigenvector derivatives with distinct and repeated eigenvalues," Commun. Numer. Meth. En., Vol. 23, No. 3, 241-251, 2007.
doi:10.1002/cnm.895

39. Cho, J., C. T. Sun, and R. B. Nelson, "Simplified calculation of eigenvector derivatives," AIAA J., Vol. 14, No. 9, 1201-1205, 1976.
doi:10.2514/3.7211

40. Fleming, J. W., "Material dispersion in lightguide glasses," Electron. Lett., Vol. 14, No. 11, 326-328, 1978.
doi:10.1049/el:19780222

41. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, 1972.

42. Yamada, R., "Guided waves along an optical fiber with parabolic index profile," J. Opt. Soc. Am., Vol. 67, No. 1, 96-103, 1977.
doi:10.1364/JOSA.67.000096

43. Fernandez, F. A. and Y. Lu, Microwave and Optical Waveguide Analysis by the Finite Element Method, Wiley, New York, 1996.

44. Olshansky, R., "Propagation in glass optical waveguides," Reviews of Modern Physics, Vol. 51, No. 2, 341-367, 1979.
doi:10.1103/RevModPhys.51.341

45. Senior, J. M., Optical Fiber Communications: Principles and Practice, 3rd Ed., Pearson Education Limited, 2009.

46. Gambling, W. A., H. Matsumura, and C. M. Ragdale, "Mode dispersion, material dispersion and profile dispersion in graded-index single-mode fibres," IEE Proc. --- H, Vol. 3, No. 6, 239-246, 1979.