Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-17
Time-Domain Real-Valued TM-Modal Waves in Lossy Waveguides
By
Progress In Electromagnetics Research, Vol. 138, 675-696, 2013
Abstract
The waveguide has a perfectly conducting surface. Its cross section domain is bounded by a singly-connected contour of a rather arbitrary but enough smooth form. Possible waveguide losses are modeled by a homogeneous conductive medium in the waveguide. The boundary-value problem for the system of Maxwell's equations with time derivative is solved in the time domain. The real-valued solutions are obtained in Hilbert space L2 in a form of transverse-longitudinal decompositions. Every field component is a product of the vector element of the modal basis dependent on transverse coordinates, and the modal amplitudes dependent on time and the axial coordinate. Three examples are included. The dynamic properties of the modal waves and concomitant energetic waves are studied and their dependence on time illustrated graphically.
Citation
Oleg Tretyakov, and Mehmet Kaya, "Time-Domain Real-Valued TM-Modal Waves in Lossy Waveguides," Progress In Electromagnetics Research, Vol. 138, 675-696, 2013.
doi:10.2528/PIER13030206
References

1. Tretyakov, , O. A., F. Erden, and , "Evolutionary approach to electromagnetics as an alternative to the time-harmonic field method," IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting,, Jul. 2012.

2. Tretyakov, , O. A., , "Evolutionary equations for the theory of waveguides," IEEE AP-S Int. Symp. Dig., 2465-2471, Jun. 1994.

3. Tretyakov, , O. A., "Evolutionary waveguide equations," Soviet Journal on Communication Technology and Electronics (English Translation of Elektrosvyaz i Radiotekhnika), , Vol. 35, No. 2, 7-17, 1990.

4. Tretyakov, , O. A., , "Essentials of nonstationary and nonlinear electromagnetic field theory," Analytical and Numerical Methods in Electromagnetic Wave Theory,, 1993.

5. Aksoy, , S., O. A. Tretyakov, and , "Evolution equations for analytical study of digital signals in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1665-1668, 2003.
doi:10.1163/156939303322760209

6. "http://www.springer.com/birkhauser/mathematics/journal/28.,".
doi:10.1163/156939303322760209

7. Tretyakov, , O. A., F. Erden, and , "Separation of the instantaneous and dynamic polarizations in studies of dispersive dielectrics," MSMW'07 Symposium Proceedings,, 42-48, Jun. 2007.

8. Erden, , F., O. A. Tretyakov, and , "Excitation by a transient signal of the real-valued electromagnetic fields in a cavity," Phys. Rev., E,, Vol. 77, 056605, May 2008.
doi:10.1103/PhysRevE.77.056605

9. Tretyakov, , O. A., O. Akgun, and , "Derivation of Klein-Gordon equation from Maxwell's Equations and study of relativistic time-domain waveguide modes," Progress In Electromagnetics Research,, Vol. 105, 171-191, 2010.
doi:10.2528/PIER10042702

10. Tretyakov, O. A. and The real-valued time-domain, "The real-valued time-domain TE-modes in lossy waveguides," Progress In Electromagn Research, Vol. 127, 405-426, 2012.
doi:10.2528/PIER12031402

11. Gabriel, , G. J., "Theory of electromagnetic transmission structures, Part I: Relativistic foundation and network formalism," Proc. IEEE,, Vol. 68, No. 3, 354-366, 1980.
doi:10.1109/PROC.1980.11646

12. Borisov, , V. V., , Transient Electromagnetic Waves, Leningrad Univ. Press, 1987.

13. Kristensson, , G., "Transient electromagnetic wave propagation in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5--6, 645-671, Sept. 1995.
doi:10.1163/156939395X00866

14. Shvartsburg, , A. B., "Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models)," Phys. Usp., Vol. 41, No. 1, 77-94, Jan. 1998..
doi:10.1070/PU1998v041n01ABEH000331

15. Slivinski, A. and E. Heyman, "Time-domain near-field analysis of short-pulse antennas | Part I: Spherical wave (multipole) expansion," IEEE Trans. on Antenn. and Propag.,, Vol. 47, 271-279, Feb. 1999.
doi:10.1109/8.761066

16. Geyi, , W., "A time-domain theory of waveguides," Progress In Electromagnetics Research, Vol. 59, 267-297, , 2006.

17. Dusseaux, , R., "Telegraphist's equations for rectangular waveguides and analysis in nonorthogonal coordinates," Progress In Electromagnetics Research, Vol. 88, 53-71, 2008.
doi:10.2528/PIER08101707

18. Polyanin, A. D., A. V. Manzhirov, and , "Handbook of Mathematics for Engineers and Scientists," Chapman & Hall/CRC Press, , 2006.

19. Polyanin, A. D., , Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, FL, 2002, 2002.

20. Miller, Jr., , W., " Symmetry and Separation of Variables," Addison-Wesley Publication Co., 1977.

21. Abramowitz, , M., I. A. Stegun, and , Handbook of Mathematical Functions, , Dover Publications, Inc., 1965.

22. Umov, , N. A., , "Ein theorem Äuber die wechselwirkungen in endlichen entfernungen," Zeitschrift FÄur Mathematik Und Physik, Vol. 97, 1874.

23. Poynting, , J. H., , "On the transfer of energy in the electromagnetic field," Philos. Trans. of the Royal Society of London, Vol. 175, 343-361, 1884.
doi:10.1098/rstl.1884.0016