Vol. 51
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-18
Differential Evolution Algorithm for Optimizing the Conflicting Parameters in Time-Modulated Linear Array Antennas
By
Progress In Electromagnetics Research B, Vol. 51, 101-118, 2013
Abstract
In this paper, a new technique is proposed to optimize the conflicting parameters like low value of maximum side lobe level (SLL), narrow beam-width of the main beam and low value of maximum sideband radiation level (SRL) of time-modulated linear antenna arrays (TMLAAs). The method is based on minimizing a multi-objective fitness function by using single-objective differential evolution algorithm (DEA) technique. The method is applied to both uniformly excited TMLAA (UE-TMLAA) and non-uniformly excited TMLAA (NUE-TMLAA) to synthesize low side lobe optimum pattern at operating frequency by suppressing the sideband radiation level to a sufficiently low value. For UE-TMLAA only the switch-on time durations of the array elements and for NUE-TMLAA the switch-on time durations and the static amplitudes with predetermined dynamic range ratio (DRR) of static amplitudes are taken as the optimization parameters for the DEA. To show effectiveness of the proposed approach, the single-objective DEA optimized results are compared with those obtained by other single objective and multi-objective techniques that has been reported previously. Also, first null beam width (FNBW) and half power beam width (HPBW) of the DEA optimized patterns at fundamental radiation are compared with those of the Dolph-Chebyshev (D-C) pattern of same SLL.
Citation
Sujit Kumar Mandal, Gautam Mahanti, and Rowdra Ghatak, "Differential Evolution Algorithm for Optimizing the Conflicting Parameters in Time-Modulated Linear Array Antennas," Progress In Electromagnetics Research B, Vol. 51, 101-118, 2013.
doi:10.2528/PIERB13022710
References

1. Shanks, H. E. and R. W. Bickmore, "Four dimensional electromagnetic radiators," Canad. J. Phys., Vol. 37, No. 3, 263-275, 1959.
doi:10.1139/p59-031

2. Kummer, W. H., A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low side-lobes from time-modulated arrays," IEEE Trans. Antennas Prop., Vol. 1, No. 6, 633-639, 1963.
doi:10.1109/TAP.1963.1138102

3. Bregains, J. C., J. Fondevila-Gomez, G. Franceschetti, and F. Ares, "Signal radiation and power losses of time-modulated arrays," IEEE Trans. Antennas Prop., Vol. 56, No. 6, 1799-1804, 2008.
doi:10.1109/TAP.2008.923345

4. Yang, S., Y. B. Gan, and P. K. Tan, "Evaluation of directivity and gain for time modulated linear antenna arrays," Microw. Opt. Technol. Lett., Vol. 42, No. 2, 167-171, 2004.
doi:10.1002/mop.20241

5. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time-modulated linear arrays by the differential evolution algorithm," IEEE Antennas Wireless Prop. Lett., Vol. 1, 173-175, 2002.
doi:10.1109/LAWP.2002.807789

6. Yang, S., Y. B. Gan, and P. K. Tan, "A new technique for power-pattern synthesis in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 2, 285-287, 2003.
doi:10.1109/LAWP.2003.821556

7. Aksoy, E. and E. Afacan, "Thinned nonuniform amplitude time-modulated linear arrays," IEEE Antennas and Wireless Prop. Lett., Vol. 9, 514-517, 2010.
doi:10.1109/LAWP.2010.2051312

8. Li, G., S. Yang, Y. Chen, and Z. Nie, "A novel electronic beam steering technique in time modulated antenna arrays," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
doi:10.2528/PIER09072602

9. Yang, S., Y. B. Gan, A. Qing, and P. K. Tan, "Design of uniform amplitude time modulated linear array with optimized time sequences," IEEE Trans. Antennas and Prop., Vol. 53, No. 7, 2337-2339, 2005.
doi:10.1109/TAP.2005.850765

10. Fondevila, J., J. C. Bregains, F. Ares, and E. Moreno, "Optimizing uniformly excited linear arrays through time modulation," IEEE Antennas Wireless Prop. Lett., Vol. 3, No. 1, 298-301, Dec. 2004.
doi:10.1109/LAWP.2004.838833

11. Fondevila, J., J. C. Brégains, F. Ares, and E. Moreno, "Application of time-modulation in the synthesis of sum and di®erence patterns by using linear arrays," Microw. Opt. Technol. Lett., Vol. 48, 829-832, 2006.
doi:10.1002/mop.21489

12. Mandal, S. K., R. Ghatak, and G. K. Mahanti, "Minimization of side lobe level and side band radiation of a uniformly excited time modulated linear antenna array by using artificial bee colony algorithm," Proceedings of IEEE Symposium on Industrial Electronics and Applications (ISIEA 2011), 247-250, Sep. 2011.

13. Poli, L., P. Rocca, L. Manica, and A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microw. Antennas Propag., Vol. 4, No. 9, 1157-1164, 2010.
doi:10.1049/iet-map.2009.0042

14. Manica, L., P. Rocca, L. Poli, and A. Massa, "Almost time independent performance in time-modulated linear arrays," IEEE Antennas Wireless Prop. Lett., Vol. 8, 843-846, 2009.
doi:10.1109/LAWP.2009.2027452

15. Chen, Y., S. Yang, and Z. Nie, "Improving conflicting specifications of time-modulated antenna arrays by using a multiobjective evolutionary algorithm," Int. J. Numer. Model, Vol. 25, No. 3, 205-215, Wiley Online Library, 2012.
doi:10.1002/jnm.824

16. Poli, L., P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," EEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1408-1411, Apr. 2010.
doi:10.1109/TAP.2010.2041165

17. Rocca, P., P., L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 827-838, 2010.
doi:10.1163/156939310791036304

18. Poli, L., P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays --- Analysis and optimization of the sideband radiations," IET Microw. Antennas Propag., Vol. 4, No. 9, 1165-1171, 2010.
doi:10.1049/iet-map.2009.0379

19. Poli, L., P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microw. Antennas Propag., Vol. 6, No. 2, 214-222, 2012.
doi:10.1049/iet-map.2011.0159

20. Tong, Y. and A. Tennant, "Reduced sideband levels in time-modulated arrays using half-power sub-arraying techniques," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 301-303, 2011.
doi:10.1109/TAP.2010.2090484

21. Tong, Y. and A. Tennant, "Sideband level suppression in time modulated linear arrays using modified switching sequences and fixed bandwidth elements ," Electron. Lett., Vol. 48, No. 1, 10-11, 2012.
doi:10.1049/el.2011.2378

22. Zhu, Q., S. Yang, L. Zheng, and Z. Nie, "Design of a low side lobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4436-4439, Sep. 2012.
doi:10.1109/TAP.2012.2207082

23. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems ," Inverse Problems, Topical Review, Vol. 25, 1-41, Dec. 2009.

24. Lin, C., A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by using differential evolution," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2553-2561, Aug. 2010.
doi:10.1109/TAP.2010.2048864

25. Das, S. and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE Trans. Evol. Comput., Vol. 15, No. 1, 4-31, 2011.
doi:10.1109/TEVC.2010.2059031

26. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 38-49, Feb. 2011.
doi:10.1109/MAP.2011.5773566