Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-19
Electromagnetic Design and FEM Analysis of a Novel Dual-Air-Gap Reluctance Machine
By
Progress In Electromagnetics Research, Vol. 140, 523-544, 2013
Abstract
The electro-magnetic torque production in the reluctance machine is highly influenced by the magnetic linkages in the air-gap area. The conventional machines derive the drawback of reduction in the air-gap area to a minimal due to influence of mechanical unbalancing thereby restricting the effective energy conversion area. In order to increase the magnetic linkage area the dual-air-gap structure is introduced. The dual-air-gap structure is realised through the division of the magnetic circuit area into two-air-gap while still maintaining the net air-gap length value. A double-rotor with single-stator structure is used to attribute the above concept. The electro-magnetic analysis of such a structure is developed and investigated through numerical analysis. In order to validate the proposed structure the electro-magnetic characteristics are compared with that of the conventional structure at similar operating conditions. The maximum torque generated by the selected dual-air-gap structure is 1.7549 Nm and for conventional structure is 1.2723 Nm. The evaluation of the proposed machine is done at the same operating conditions and it is found that the dual-air-gap structure exhibit 65% increase in average torque value in comparison with that of the conventional single-air-gap structure.
Citation
Chockalingam Aravind, Norhisam Bin Misron, Ishak Aris, Mohammad Hamiruce Marhaban, and Masami Nirei, "Electromagnetic Design and FEM Analysis of a Novel Dual-Air-Gap Reluctance Machine," Progress In Electromagnetics Research, Vol. 140, 523-544, 2013.
doi:10.2528/PIER13022008
References

1. Miller, T. J. E., "Switched Reluctance Motors and Their Control," Magna Physics and Clarendon Press, Oxford, 1993.

2. Krishnan, R., Design Procedure for Switched-reluctance Motors Design, Wiley-Interscience, New York, 2001.
doi:10.1109/28.2896

3. Aravind, C. V., M. Norhisam, I. Aris, M. H. Marhabhan, D. Ahmad, and M. Nirei, "Double rotor switched reluctance motors: Fundamentals and magnetic circuit analysis," IEEE Student Conference on Research and Development (SCORED2011), 294-299, Cyberjaya, Malaysia, Dec. 19-20, 2011.

4. Norhisam, M., K. C. Wong, N. Mariun, and H. Wakiwaka, "Double side interior permanent magnet linear synchronous motor and drive system," International Conference on Power Electronics and Drives Systems, PEDS , Vol. 2, 1370-1373, Nov. 28-01, 2005.

5. Norhisam, M., S. Ridzuan, R. N. Firdaus, C. V. Aravind, H. Wakiwaka, and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generators for agricultural application," Progress In Electromagnetic Research, Vol. 129, 345-363, 2012.

6. Norhisam, M., M. Norafiza, and C. Y. Sia, "Double stator type permanent magnet generator," 2009 IEEE Student Conference on Research and Development (SCOReD), 316-319, Nov. 16-18, 2009.

7. Zhang, D., S. X. Niu, K. T. Chau, J. Z. Jiang, and Y. Gong, "Design and analysis of a double-stator cup-rotor directly driven permanent magnet wind power generator," CES/IEEE 5th International Power Electronics and Motion Control Conference, Vol. 3, 1-5, Aug. 14-16, 2006.

8. Peng, W., F. G. Zhang, and J.-W. Ahn, "Design and control of a novel bearingless SRM with double stator," 2012 IEEE International Symposium on Industrial Electronics (ISIE), 1928-1933, May 28-31, 2012.

9. Li, L. B., Q. Y. Zhao, G. K. Shi, and H. J. Wang, "Analysis of feasibility of double-rotor motor applied to hybrid electric vehicle," Vehicle Power and Propulsion Conference, 1-5, Sep. 3-5, 2008.

10. Hoeijmakers, M. J. and J. A. Ferreira, "The electric variable transmission," IEEE Transactions on Industry Applications, Vol. 42, No. 4, 1092-1100, Jul.-Aug. 2006.
doi:10.1109/TIA.2006.877736

11. Liu, C. and K. T. Chau, "Electromagnetic design and analysis of double rotor flux modulated permanent magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.

12. Torkaman, H. and E. Afjei, "Radial force characteristic assessment in a novel two-phase dual layer SRG using FEM," Progress In Electromagnetics Research, Vol. 125, 185-202, 2012.
doi:10.2528/PIER12010408

13. Cui, S. M., Y. J. Yuan, and T. C. Wang, "Research on switched reluctance double-rotor motor used for hybrid electric vehicle," International Conference on Electrical Machines and Systems, ICEMS, 3393-3396, Oct. 17-20, 2008.

14. Norhisam, M., C. V. Aravind, H. Marhaban, I. Aris, and M. Nirei, Multi-rotor reluctance motor, Malaysian Intellectual Property Filing Agency, Malaysia, Mar. 2013.

15. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

16. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406

17. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

18. Kameari, A., "Local force calculation in 3D FEM with edge elements," International Journal of Applied Electromagnetics in Materials, Vol. 3, 231-240, 1993.

19. Aravind, C. V., M. Norhisam, M. H. Marhaban, and I. Aris, "Analytical design of double rotor switched reluctance motor using optimal pole arc values ," International Review in Electrical and Electronics, Vol. 7, No. 1, 3314-3324, Feb. 2012.

20. http://www.youtube.com/watch?v=orD2m7jV3MU.