Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-20
Enhanced and Efficient ISAR Image Focusing Using the Discrete Gabor Representation in an Oversampling Scheme
By
Progress In Electromagnetics Research, Vol. 138, 227-244, 2013
Abstract
Inverse synthetic aperture radar (ISAR) imaging is one of the most well-known techniques of radar target recognition. One of the most important issues in ISAR imaging is the improvement of the image smeared by a target with complicated motion. In this paper, we propose the discrete Gabor representation (DGR) in an oversampling scheme as an effective means of obtaining a well-focused ISAR image with a short calculation time. In contrast to other linear time-frequency transforms, the DGR obtains Gabor coefficients using the analysis window frames derived from the clearly defined synthesis window. The oversampling scheme of the DGR leads to accurate calculations of the Gabor coefficients, which denote signal time-frequency amplitude. Since each Gabor coefficient is compartmentally assigned to the associated unit cell of the time-frequency grid, the DGR can show an excellent time-frequency concentration and can effectively discriminate the Doppler components of prominent point-scatterers. The simulation results demonstrate that the DGR not only has enhanced focusing performance but also retains computational efficiency. The DGR in the oversampling scheme is expected to facilitate high-quality ISAR imaging in radar target recognition.
Citation
Ji-Hoon Park, and Noh-Hoon Myung, "Enhanced and Efficient ISAR Image Focusing Using the Discrete Gabor Representation in an Oversampling Scheme," Progress In Electromagnetics Research, Vol. 138, 227-244, 2013.
doi:10.2528/PIER13022004
References

1. Chang, Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

2. Zhang, , M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, , 2011.
doi:10.2528/PIER11071501

3. Wu., J., Z. Li, Y. Huang, Q. H. Liu, and J. Yang, , "Processing one-stationary bistatic SAR data using inverse scaled Fourier transform," Progress In Electromagnetics Research, Vol. 129, , 143-159, 2012.

4. Park, J. I. and K. T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

5. Park, , S. H., J. H. Lee, and K. T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.

6. Calvo-Gallego, J. and F. Perez-Martinez, "Simple traffc surveil-lance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809

7. Buddendick, , H. and T. F. Eibert, "Bistatic image formation from shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, , 1-18, 2011..
doi:10.2528/PIER11060212

8. Jia, , Y., L. Kong, and X. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.2528/PIER11052402

9. Felguera-Martin, , D., J. T. Gonzalez-Partida, and M. Burgos-Garcia, "Interferometric ISAR imaging on maritime target applications: Simulation of realistic targets and dynamics," Progress In Electromagnetics Research, Vol. 132, 571-586, 2012.

10. Park, S. H., J. I. Park, and K. T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.

11. Liu, , B. and W. Chang, "Range alignment and motion compensation for missile-borne frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013.

12. Jeong, , H. R., H. T. Kim, and K. T. Kim, "Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus," IEEE Trans. Antennas and Propagation, Vol. 56, No. 4, 1144-1154, 2008.
doi:10.1109/TAP.2008.919208

13. Kirkland, D. M., "An alternative range migration correction algo-rithm for focusing moving targets," Progress In Electromagnetics Research, Vol. 131, 227-241, 2012.

14. Liu, , B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012..

15. Chen, V. C., H. Ling, and , "Time-frequency Transforms for Radar Imaging and Signal Analysis," Artech House,, 2002.

16. Chen, , V. C. and S. Qian, "Joint time-frequency transform for radar range-Doppler imaging," IEEE Trans. Aerospace and Electronic Systems, Vol. 34, No. 2, 486-499, 1998.
doi:10.1109/7.670330

17. Hajduch, , G., J. M. LevCallec, and R. Garello, "Airborne high-resolution ISAR imaging of ship targets at sea," IEEE Trans. Aerospace and Electronic Systems, Vol. 40, No. 1, 378-384, 2004.
doi:10.1109/TAES.2004.1292177

18. Shin, S. Y. and N. H. Myung, "The application of motion compensation of ISAR image for a moving target in radar target recognition," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1673-1678, 2008..
doi:10.1002/mop.23466

19. Berizzi, , F., E. D. Mese, M. Diani, and M. Martorella, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling of the range instantaneous Doppler," IEEE Trans. Image Processing, Vol. 10, No. 12, 1880-1890, 2001.
doi:10.1109/83.974573

20. Peng, , J., L. Dan, D.Liu, G.-M. Wang, and H. Yuan, "Recon-struction of ISAR imaging using time-frequency distribution series method," 1st Asian and Pacific Conference on Synthetic Aperture Radar,, 351-354, , Nov. 2007.

21. Choi, I. S., B. L. Cho, and H. T. Kim, "ISAR motion compensation using evolutionary adaptive wavelet transform," IEE Proc. Radar, Sonar and Navigation, Vol. 150, No. 4, 229-233, 2003.
doi:10.1049/ip-rsn:20030639

22. Thayaparan, T., G. Lampropoulos, S. K. Wong, and E. Rise-borough, "Application of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data," IEE Proc. Radar, Sonar and Navigation, Vol. 150, No. 4, 213-220, 2003..
doi:10.1049/ip-rsn:20030670

23. Brinkman, W. and T. Thayaparan, "Focusing ISAR images using the AJTF optimized with the GA and the PSO algorithm-comparison and results," 2006 IEEE Conference on Radar, Apr. 2006..

24. Du, L. and G. Su, "Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 3, 247-249, 2005..
doi:10.1109/LGRS.2005.851540

25. Thayaparan, T., L. J. Stankovic, C. Wernik, and M. Dakovic, "Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using S-method-based approach," IET Signal Processing, Vol. 2, No. 3, 247-264, 2008..
doi:10.1049/iet-spr:20070093

26. Wexler, , J., S. Raz, and , "Discrete Gabor expansion," Signal Processing, Vol. 21, No. 3, 207-220, 1990.
doi:10.1016/0165-1684(90)90087-F

27. Zibulski, , M. and Y. Y. Zeevi, "Oversampling in Gabor scheme," IEEE Trans. Signal Processing, Vol. 41, No. 8, 2679-2985, 1993.
doi:10.1109/78.229898

28. Bastiaans, , M. J., "Gabor's signal expansion and the Zak transform," Applied Optics, , Vol. 33, No. 23, 5241-5255, 1994.
doi:10.1364/AO.33.005241

29. Strohmer, T., "Approximation of dual Gabor frames, window decay, and wireless communications," Applied and Computational Harmonic Analysis, Vol. 11, 243-262, 2001.
doi:10.1006/acha.2001.0357

30. Sondergaard, , P. L., "Efficient algorithms for the discrete Gabor transform with a long FIR window," Journal of Fourier Analysis and Applications, Vol. 18, No. 3, 456-470, 2012.
doi:10.1007/s00041-011-9210-5

31. Zhang, , X., J. Qin, and G. Li, "SAR target classcification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.