Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-26
A Broadband High Linearity Current-Reuse Bulk-Controlled Mixer for 4G Applications
By
Progress In Electromagnetics Research, Vol. 138, 337-350, 2013
Abstract
A high linearity down-conversion mixer for the application of the fourth generation (4G) mobile communication systems is presented. The presented 2.3 to 5.8 GHz broadband mixer adopts current-reused and bulk-controlled techniques. The linearized transconductor stage is composed of the CMOS amplifiers and the bulk-controlled compensation (BCC) transistors. The bulk-controlled voltage is applied to adjust the threshold voltage of the BCC transistor. Thus, the equivalent third-order intermodulation (IM3) term of the CMOS amplifiers and the BCC transistors can be mitigated so as to improve the linearity. Furthermore, the current-reused architecture enhances the conversion gain of the proposed mixer and compensates the loss caused by the shunt feedback matching network. The presented mixer consumes 4.8 mA from a 1.5 V power supply. The measurement results of the mixer exhibit the maximum power conversion gain of 11.3 dB. The input third-order intercept point (IIP3) of 4.7 dBm over the entire 2.3-5.8 GHz band is observed.
Citation
Hung-Che Wei, Chih-Lung Hsiao, and Ro-Min Weng, "A Broadband High Linearity Current-Reuse Bulk-Controlled Mixer for 4G Applications," Progress In Electromagnetics Research, Vol. 138, 337-350, 2013.
doi:10.2528/PIER13020702
References

1. Chang, M. J., Z. Abichar, and C.-Y. Hsu, "WiMAX or LTE: Who will lead the broadband mobile internet?," IT Professional,, Vol. 12, No. 3, 26-32, May 2010.
doi:10.1109/MITP.2010.47

2. Ban, , Y.-L., J.-H. Chen, S.-C. Sun, J. L.-W. Li, and J.-H. Guo, "Printed wideband antenna with chip-capacitor-loaded inductive strip for LTE/GSM/UMTS WWAN wireless USB dongle applications," Progress In Electromagnetics Research,, Vol. 128, 313-329, 2012.

3. Wan, Q., C. Wang, and , "A wideband CMOS current-mode down-conversion mixer for multi-standard receivers," Progress In Electromagnetics Research, Vol. 129, 421-437, 2012.

4. Wang, S. , S., B.-Z. Huang, and , "Design of low-loss and highly-selective CMOS active bandpass filter at K-band," Progress In Electromagnetics Research, Vol. 128, 331-346, 2012.

5. Jang, , S.-L., Y.-S. Lin, C.-W. Chang, and M.-H. Juang, "A three-phase voltage-controlled oscillator using a composite LC transmission-line resonator," Progress In Electromagnetics Research Letters, Vol. 27, 151-160, 2011..
doi:10.2528/PIERL11092905

6. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly effcient PA for WiMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

7. Chen, , W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

8. Yang, , C.-F., Y.-C. Chen, C.-Y. Kung, J.-J. Lin, and T.-P. Sun, "Design and fabrication of a compact quad-band bandpass filter using two di®erent parallel positioned resonators," Progress In Electromagnetics Research, Vol. 115, 159-172, 2011.

9. Chen, , C.-Y., C.-C. Lin, and , "The design and fabrication of a highly compact microstrip dual-band bandpass filter," Progress In Electromagnetics Research, Vol. 112, 299-307, 2011.

10. Gilbert, , B., "The multi-tanh principle: A tutorial overview," IEEE J. Solid-State Circuits , Vol. 33, No. 1, 2-17, Jan. 1998.
doi:10.1109/4.654932

11. Lee, , S.-G., J.-K. Choi, and , "Current-reuse bleeding mixer," IEE Electron. Lett., Vol. 36, No. 8, 696-697, Apr. 2000.
doi:10.1049/el:20000556

12. Li, Q., J. Zhang, W. Li, and J.-S. Yuan, "CMOS RF mixer no-linearity design," Proc. 44th IEEE Midwest Symp. Circuits Syst., Vol. 2, 808-811, Aug. 2001.

13. Gilbert, , B., "A new wideband amplifier techniques," IEEE J. Solid-State Circuits, Vol. 3, No. 4, 335-365, Dec. 1968.

14. Kim, , T. W. and B. Kim, "A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications," IEEE J. Solid-State Circuits,, Vol. 41, No. 4, 945-953, Apr. 2006.
doi:10.1109/JSSC.2006.870744

15. Kim, , T. W., B. Kim, and K. Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE J. Solid-State Circuits, Vol. 39, No. 1, 223-229, Jan. 2004.
doi:10.1109/JSSC.2003.820843

16. Liang, K.-H., C.-H. Lin, H.-Y. Chang, and Y.-J. Chan, , "A new linearization technique for CMOS RF mixer using third-order transconductance cancellation," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 5, 350-352, May 2008.
doi:10.1109/LMWC.2008.922129

17. BSIM3v3.3 MOSFET Model Users' Manual, , Univ. of California, 2006.

18. Deen, , M. J., R. Murji, N. Jafferali, and W. Ngan, , "Low-power CMOS integrated circuits for radio frequency applications," IEE Proc. Circuits, Devices Syst., Vol. 153, No. 5, 509-522, Oct. 2005.
doi:10.1049/ip-cds:20045069

19. Huang, M.-F., S.-Y. Lee, and C.-J. Kuo, , "A 5.25 GHz CMOS even harmonic mixer with an enhancing inductance," Proc. IEEE Int. Symp. Circuits Syst., Vol. 3, 2116-2119, May 2005.

20. Chao, , S.-Y. and C.-Y. Yang, "A 2.4-GHz 0.18-um CMOS doubly balanced mixer with high linearity," Proc. IEEE Int. Symp. VLSI Design, Automation Test, 247-250, Apr. 2008.

21. Yang, , T.-Y., H.-L. Tu, and H.-K. Chiou, "Low-voltage high-linear and isolation transformer based mixer for direct conversion receiver," Proc. IEEE Int. Symp. Circuits Syst., 3754-3757, May 2006.