Vol. 38
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-06
Novel Planar Antenna with a Broadside Radiation
By
Progress In Electromagnetics Research Letters, Vol. 38, 45-53, 2013
Abstract
This paper presents a novel low-profile antenna with a broadside radiation. The proposed design strategy consists in modifying the layout of a classical Vivaldi antenna, thus resulting in compact dimensions and a broadside radiation pattern. Two different ways of implementing the proposed design approach are presented and discussed. More specifically, experimental data referring to two prototypes on a FR4 substrate with an operating frequency of 2.45 GHz are reported. The first layout has approximately the same dimensions of a Vivaldi antenna and a directivity of about 7 dBi, the second one has more compact dimensions (the dimensions are smaller than the ones of a standard patch antenna) and a directivity of about 5 dBi.
Citation
Giuseppina Monti, Fabrizio Congedo, and Luciano Tarricone, "Novel Planar Antenna with a Broadside Radiation," Progress In Electromagnetics Research Letters, Vol. 38, 45-53, 2013.
doi:10.2528/PIERL13020606
References

1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microw. Conf., 101-105, Brighton, UK, Jun. 1979.

2. Janaswamy, R. and D. Schaubert, "Analysis of the tapered slot antenna IEEE Trans. on Antennas and Propag.,", Vol. 35, No. 9, 1058-1065, 1987.

3. Oraizi, H. and S. Jam, "Optimum design of tapered slot antenna profile," IEEE Trans. on Antennas and Propag., Vol. 51, No. 8, 1987-1995, 2003.
doi:10.1109/TAP.2003.811090

4. Zucker, F. J., Antenna Engineering Handbook, McGraw Hill, 1961.

5. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

6. Ruvio, G., "UWB breast cancer detection with numerical phantom and Vivaldi antenna," Proc. of the 2011 IEEE nternational Conference on Ultra-wideband (ICUWB), 8-11, Bologna, Italy, Sep. 2011.

7. Vu, T. A., et al. "UWB Vivaldi antenna for impulse radio beamforming," Proc. of the 2009 NORCHIP, 1-5, Nov. 2009.

8. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904

9. Schuppert, B., "Microstrip/slotline transitions: Modeling and experimental investigations," IEEE Trans. on Antennas and Propag., Vol. 36, No. 8, 1272-1282, 1988.

10. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-to-slotline transition," Microwave and Optical Technology Letters, Vol. 18, No. 5, 339-342, 1998.
doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

11. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

12. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 2, 1157-1160, 1996.

13. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proc. H: Microw., Antenn. and Prop., Vol. 135, No. 2, 89-92, 1988.
doi:10.1049/ip-h-2.1988.0020

14. Langley, J. D. S., P. S. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," IEE Proc. Microw. Antennas Propag., Vol. 143, No. 2, 97-102, 1996.
doi:10.1049/ip-map:19960260

15. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antenn. Wirel. Prop. Lett., Vol. 7, 656-660, 2008.
doi:10.1109/LAWP.2008.921352

16. Jolani, F., G. R. Dadashzadeh, M. Naser-Moghadasi, and A. M. Dadgarpour, "Design and optimization of compact balanced antipodal Vivaldi antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
doi:10.2528/PIERC09071510

17. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. on Antennas and Propag., Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

18. Alhawari, A. R. H., et al. "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.
doi:10.2528/PIERC12012906

19., Computer Simulation Technology, www.cst.com/.

20. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. on Antennas and Propag., Vol. 47, No. 5, 879-886, 1999.
doi:10.1109/8.774151

21. Monti, G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109

22. Monti, , G., R. de Paolis, and L. Tarricone, "A three-band T-junction power divider based on arti¯cial transmission lines," Progress In Electromagnetics Research C, Vol. 34, 41-52, 2013.