Vol. 40
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-26
Design of Wireless Power Transfer Systems Using Magnetic Resonance Coupling for Implantable Medical Devices
By
Progress In Electromagnetics Research Letters, Vol. 40, 141-151, 2013
Abstract
Efficient and compact wireless power transfer (WPT) systems are proposed and designed for recharging small implantable medical devices. They use the magnetic resonance coupling scheme to transfer power over a relatively large distance. The receiver resonator coil and the load loop are designed in correspondence to size restriction of implantable devices. The dimensions of the coils are optimized and effective values of the lumped capacitors are investigated and fine-tuned for efficiency enhancement. Three design configurations of the WPT system, each consisting of two coils at the transmitter and two coils at the receiver, are designed and fabricated. The transfer efficiency is measured over different transmission distances and with different orientation angles of the receiver coils. The measurement results show good agreements with the simulations and illustrate that the proposed WPT systems exhibit nearly omnidirectional radiation performance. Furthermore, the receiver coils are implanted inside of a biological object to show the power can be transferred effectively.
Citation
Farid Jolani, Jeetkumar Mehta, Yiqiang Yu, and Zhizhang (David) Chen, "Design of Wireless Power Transfer Systems Using Magnetic Resonance Coupling for Implantable Medical Devices," Progress In Electromagnetics Research Letters, Vol. 40, 141-151, 2013.
doi:10.2528/PIERL13020509
References

1. Kurs, A., A. Karalis, J. D. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, Vol. 323, 34-38, Jan. 2008.

2. Liu, X., F. Zhang, S. A. Hackworth, R. J. Sclabassi, and S. Mingui, "Modeling and simulation of a thin film power transfer cell for medical devices and implants," IEEE International Symposium on Circuits and Systems, 3086-3089, May 2009.

3. Li, X., H. Zhang, F. Peng, Y. Li, T. Yang, B. Wang, and D. Fang, "A wireless magnetic resonance energy transfer system for micro implantable medical sensors," Sensors 2012, Vol. 12, No. 8, 10292-10308, Jul. 2012.

4. Zhang, F., J. Liu, Z. Mao, and M. Sun, "Mid-range wireless power transfer and its application to body sensor networks," Open Journal of Applied Sciences, Vol. 2, No. 1, 35-46, Mar. 2012.

5. Schuder, J. C., "Powering and artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Proc. Int. Center Artificial Organs, Vol. 26, 2080-2083, Nov. 2002.

6. Zierhofer, C. and E. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Transactions on Biomedical Engineering, Vol. 43, No. 7, 708-714, Jul. 1996.

7. Cannon, B. L., J. F. Hoburg, D. D. Stancil, S. C. Goldstein, and , "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, Jul. 2009.

8. Choi, J. and C. Seo, "Analysis on transmission efficiency of wireless energy transmission resonator based on magnetic resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.