1. De Conti, A., S. Visacro, A. Soares, and M. A. O. Schroeder, "Revision, extension, and validation of Jordan's formula to calculate the surge impedance of vertical conductors," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, 530-536, 2006.
doi:10.1109/TEMC.2006.879345
2. Gao, C., L. Li, B. Li, and Z. Zhao, "Computation of power line tower lightning surge impedance using the electromagnetic field method," Proceeding IEEE, EMC-Zurich, 124-127, 2006.
3. Gutierrez, J. A., et al. "Nonuniform transmission tower model for lightning transient studies," IEEE Transactions on Power Delivery, Vol. 19, 490-496, 2004.
doi:10.1109/TPWRD.2003.823210
4. Ametani, A., Y. Kasai, J. Sawada, A. Mochizuki, and T. Yamada, "Frequency-dependent impedance of vertical conductors and a multiconductor tower model," IEE Proceeding Generation, Transmission and Distribution, Vol. 141, 339-345, 1994.
doi:10.1049/ip-gtd:19949988
5. Rogers, E. J. and J. F. White, "Mutual coupling between finite lengths of parallel or angled horizontal earth return conductors," IEEE Transactions on Power Delivery, Vol. 4, 103-113, 1989.
doi:10.1109/61.19196
6. Rudenberg, R., Electrical Shock Waves in Power System, Harvard Univ. Press, Cambridge, MA, 1968.
7. Dwight, H. B., "Calculation of the resistances to ground," Elec. Eng., Vol. 55, 1319-1328, 1936.
8. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 2nd Ed., Dover, New York, 1968.
9. Kaouche, S., S. Mezoued, B. Nekhoul, K. Kerroum, and K. El Khamlichi Drissi, "Induced disturbance in power network by lightning," Proceeding IEEE EMC Europe, 935-940, 2006.
10. Paul, C. R., Analysis of Multiconductor Transmission Lines, 2nd Ed., Wiley-IEEE Press, 2007.
11. Visacro, S., A. Soares, Jr., M. A. O. Schroeder, L. C. L. Cherchiglia, and V. J. Souza, "Statistical analysis of lightning current parameters: Measurements at Morro do Cachimbo Station," J. Geophy. Res., Vol. 109, 2004.
doi:10.1029/2003JD003662