Vol. 30
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-05-08
Modeling of the Direct Lightning Strike on a Towers Cascade Equipped with Its Protections
By
Progress In Electromagnetics Research M, Vol. 30, 253-269, 2013
Abstract
In this paper, a direct time domain approach based on the corresponding transmission lines equations and Finite Difference Time Domain (FDTD) method is proposed to analyze a direct lightning strike to a cascade of transmission line towers. The proposed model deals with a real case of towers being connected by ground wires and equipped with grounding systems with different topologies, as well(vertical or horizontal conductor buried in the ground, crow's feet in the ground...). In particular, this work realistically represents the tower geometry and accounts for the propagation phenomena along the tower and between the towers. The proposed direct time domain approach deals with rather complex electrical devices (towers, ground wires and grounding systems), but at the same time requires very low computational cost and also provides relatively simple implementation. Some illustrative computational examples related to some engineering applications are given in the paper.
Citation
Lotfi Boufenneche, Bachir Nekhoul, Kamal Kerroum, Khalil El Khamlichi Drissi, and Dragan Poljak, "Modeling of the Direct Lightning Strike on a Towers Cascade Equipped with Its Protections," Progress In Electromagnetics Research M, Vol. 30, 253-269, 2013.
doi:10.2528/PIERM13012304
References

1. De Conti, A., S. Visacro, A. Soares, and M. A. O. Schroeder, "Revision, extension, and validation of Jordan's formula to calculate the surge impedance of vertical conductors," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, 530-536, 2006.
doi:10.1109/TEMC.2006.879345

2. Gao, C., L. Li, B. Li, and Z. Zhao, "Computation of power line tower lightning surge impedance using the electromagnetic field method," Proceeding IEEE, EMC-Zurich, 124-127, 2006.

3. Gutierrez, J. A., et al. "Nonuniform transmission tower model for lightning transient studies," IEEE Transactions on Power Delivery, Vol. 19, 490-496, 2004.
doi:10.1109/TPWRD.2003.823210

4. Ametani, A., Y. Kasai, J. Sawada, A. Mochizuki, and T. Yamada, "Frequency-dependent impedance of vertical conductors and a multiconductor tower model," IEE Proceeding Generation, Transmission and Distribution, Vol. 141, 339-345, 1994.
doi:10.1049/ip-gtd:19949988

5. Rogers, E. J. and J. F. White, "Mutual coupling between finite lengths of parallel or angled horizontal earth return conductors," IEEE Transactions on Power Delivery, Vol. 4, 103-113, 1989.
doi:10.1109/61.19196

6. Rudenberg, R., Electrical Shock Waves in Power System, Harvard Univ. Press, Cambridge, MA, 1968.

7. Dwight, H. B., "Calculation of the resistances to ground," Elec. Eng., Vol. 55, 1319-1328, 1936.

8. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 2nd Ed., Dover, New York, 1968.

9. Kaouche, S., S. Mezoued, B. Nekhoul, K. Kerroum, and K. El Khamlichi Drissi, "Induced disturbance in power network by lightning," Proceeding IEEE EMC Europe, 935-940, 2006.

10. Paul, C. R., Analysis of Multiconductor Transmission Lines, 2nd Ed., Wiley-IEEE Press, 2007.

11. Visacro, S., A. Soares, Jr., M. A. O. Schroeder, L. C. L. Cherchiglia, and V. J. Souza, "Statistical analysis of lightning current parameters: Measurements at Morro do Cachimbo Station," J. Geophy. Res., Vol. 109, 2004.
doi:10.1029/2003JD003662