1. Meredith, R. J., Engineers Handbook of Industrial Microwave Heating, IET Power & Energy Series, London, UK, 1998.
doi:10.1049/PBPO025E
2. Ku, , H. S.-L., "Productivity improvement of composites processing through the use of industrial microwave technologies," Progress In Electromagnetics Research, Vol. 66, 267-285, 2006.
doi:10.2528/PIER06111901
3. Metaxas, A. C. and R. J. Meredith, Industrial Microwave Heating, IEE Power & Engineering Series 4, London, UK, 1988.
doi:10.1049/PBPO004E
4. Link, G., L. Feher, M. Thumm, H.-J. Ritzhaupt-Kleissl, R. Boehme, and A. Weisenburger, "Sintering of advanced ceramics using a 30 GHz, 10-kW, CW industrial gyrotron," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 547-554, 1999.
doi:10.1109/27.772284
5. Varadan, V. K., Y. Ma, A. Lakhtakia, and V. V. Varadan, "Modeling of porous ceramics during microwave sintering," Progress In Electromagnetics Research, Vol. 6, 303-313, 1992.
6. Roy, R., D. Agrawal, J. Cheng, and S. Gedevanishvili, "Full sintering of powdered-metal bodies in a microwave field," Nature, Vol. 399, 668-670, Jun. 1999.
7. Ma, J., J. F. Diehl, E. J. Johnson, K. R. Martin, N. M. Miskovsky, C. T. Smith, G. J. Weisel, B. L. Weiss, and D. T. Zimmerman, "Systematic study of microwave absorption, heating and microstructure evolution of porous copper powder metal compacts," J. Appl. Phys., Vol. 101, 074906, 2007.
doi:10.1063/1.2713087
8. Rybakov, K. I., V. E. Semenov, S. V. Egorov, A. G. Eremmev, I. V. Plotnikov, and Y. V. Bykov, "Microwave heating of conductive powder materials," J. Appl. Phys, Vol. 99, 023506, 200.
doi:10.1063/1.2159078
9. Anklekar, R. M., K. Bauer, D. Agrawal, and R. Roy, "Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts," Powder Metallurgy, Vol. 48, 39-46, 2005.
doi:10.1179/003258905X37657
10. Buchelnikov, V. D., D. V. Louzguine-Luzgin, A. P. Anzulevich, I. V. Bychkov, N. Yoshikawa, M. Sato, and A. Inoue, "Modeling of microwave heating of metallic powders," Physica B, Vol. 403, 4053-4058, 2008.
doi:10.1016/j.physb.2008.08.004
11. Anzulevich, A. P., V. D. Buchelnikov, I. V. Bychkov, and D. V. Louzguine-Luzgin, "Microwave penetrating and heating of metallic powders," PIERS Proceedings, 844-847, Moscow, Russia, Aug. 2009.
12. Garnett, J. C. M., "Colours in metal glasses and metal films," Philosophical Trans. of the Royal Society, Vol. CCIII, 385-42, London, 1904.
13. Goncharenko, A., V. Lozovski, and E. Venger, "Lichteneckers equation: Applicability and limitations," Optics Communications, Vol. 174, No. 1-4, 1932, 2000.
doi:10.1016/S0030-4018(99)00695-1
14. Simpkin, R., "Derivation of Litchenker's logarithmic mixture formula from Maxwell's equations," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 3, 545-550, Mar. 2010.
doi:10.1109/TMTT.2010.2040406
15. Bruggeman, D., "Calculation of various physical constants of heterogeneous substances," Ann. Phys., Vol. 32, No. 12, 636-664, 1935.
doi:10.1002/andp.19354160705
16. Tinga, W. R., W. A. G. Vos, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. of Applied Physics, Vol. 44, No. 9, 3897-3902, 1973.
doi:10.1063/1.1662868
17. Tao, R. B., Z. Chen, and P. Sheng, "First-principles Fourier approach for the calculation of effective dielectric constant of periodic composites," Physical Review B, Vol. 41, No. 4, 2417-2420, 1990.
doi:10.1103/PhysRevB.41.2417
18. Kiley, E. M., V. V. Yakovlev, K. Ishizaki, and S. Vaucher, "Applicability study of classical and contemporary models for effective complea permittivity of metal powders," Journal of Microwave Power and Electromagnetic Energy, Vol. 46, No. 1, 26-38, 2012.
19. Parkash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique," IEEE Trans. on Microw. Theory and Tech., Vol. 27, No. 9, 791-795, Sep. 1979.
doi:10.1109/TMTT.1979.1129731
20. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. on Microw. Theory and Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
doi:10.1109/22.57336
21. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405
22. Akhtar, M. J., L. E. Feher, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 5, May 2006.
doi:10.1109/TMTT.2006.873623
23. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
24. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608
25. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.
26. Engheta, N. and R. W. Ziolkowski, "Metamaterials: Physics and Engineering Explorations," IEEE Press, 2006.
27. Zimmerman, D. T., J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, G. J. Weisel, and , "Microwave absorption in percolating metal-insulator composites," Appl. Phys. Letters, Vol. 93, No. 214103, 1-3, 2008.
28. "Computer Simulation Technology,", CST, Darmstadt, Germany, 1998-2013, [Online] Available: www.cst.com.
29. "Ansys HFSS,", ANSYS, Inc., PA, USA, 2011. [Online]. Available: www.ansys.com.
30. Galek, T., K. Porath, E. Burkel, and U. van Rienen, "Extraction of effective permittivity and permeability of metallic powders in the microwave range," Modelling and Simulations in Materials Science and Engineering, Vol. 18, 025014-1-025014-13, 2010.
31. Takayama, S., G. Link, S. Miksch, M. Sato, J. Ichikawa, and M. Thumm, "Millimetre wave effects on sintering behaviour of metal powder compacts," Powder Metallurgy, Vol. 49, 274-280, 2006.
doi:10.1179/174329006X110835
32. Doyle, W. T., "The Clausius-Mossotti problem for cubic array of spheres," J. Appl. Phys., Vol. 49, No. 2, 795-797, 1978.
doi:10.1063/1.324659
33. Pozar, D. M., Microwave Engineering, John Willey & Sons, Inc., New York, 1999.