Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-14
Far-Field Tunable Nano-Focusing Based on Metallic Slits Surrounded with Nonlinear-Variant Widths and Linear-Variant Depths of Circular Dielectric Grating
By
Progress In Electromagnetics Research, Vol. 138, 647-660, 2013
Abstract
In this work, we present a new design of a tunable nanofocusing lens using a circular grating of linear-variant depths and nonlinear-variant widths. Constructive interference of cylindrical surface plasmon launched by the sub-wavelength metallic structure forms a sub-diffraction-limited focus, the focal length can be adjusted by varying the geometry of each groove in the circular grating. According to the numerical calculation, the range of focusing points shift is much more than other plasmonic lens, and the relative phase of emitting light scattered by surface plasmon coupling circular grating can be modulated by the nonlinear-variant width and linear-variant depth. The simulation result indicates that the different relative phase of emitting light lead to variant focal length. We firstly show a unique phenomenon for the linear-variant depths and nonlinear-variant widths of the circular grating that the positive change and negative change of the depths and widths of grooves can result in different of variation trend between relative phases and focal lengths. These results paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, super-resolution optical microscopic imaging, optical trapping, and sensing.
Citation
Pengfei Cao, Lin Cheng, Xiaoping Zhang, Wei-Ping Lu, Wei-Jie Kong, and Xue-Wu Liang, "Far-Field Tunable Nano-Focusing Based on Metallic Slits Surrounded with Nonlinear-Variant Widths and Linear-Variant Depths of Circular Dielectric Grating," Progress In Electromagnetics Research, Vol. 138, 647-660, 2013.
doi:10.2528/PIER13011904
References

1. "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Cao, , P. F., X. P. Zhang, L. Cheng, and Q. Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801

3. Cao, , P. F., L. Cheng, Y. E. Li, X. P. Zhang, Q. Q. Meng, and W. J. Kong, "Reflectivity and phase control research for superresolution enhancement via the thin flms mismatch," Progress In Electromagnetics Research, Vol. 107, 365-378, 2010.
doi:10.2528/PIER10061801

4. Monti, , G., L. Tarricone, and , "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801

5. Cao, , P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-re°ection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research , Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010

6. Barnes, , W. L. and Surface plasmon, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

7. Lezec, , H. J., A. Degiron, E. Devaux, R. A. Linke, F. Martin, Moreno, L. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820, 2002.
doi:10.1126/science.1071895

8. Luo, , Z., T. Suyama, X. Xu, and Y. Okuno, "A grating based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103

9. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406

10. Ebbesen, , T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

11. Kumar, , S., G. Sharma, and V. Singh, "Sensitivity modulation of surface plasmon resonance sensor configurations in optical fiber waveguide," Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013.

12. Fang, , N. and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett., Vol. 82, 161-163, 2003.
doi:10.1063/1.1536712

13. Shi, , H., C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Optics Express, Vol. 13, No. 18, 6815-6820, 2005.
doi:10.1364/OPEX.13.006815

14. Jia, , B., H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, "Near-field visualization of focal depth modulation by step corrugated plasmonic slits," Appl. Phys. Lett., Vol. 94, 151912, 2009.
doi:10.1063/1.3120542

15. Shi, , H., C. Du, and X. Luo, "Focal length modulation based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett., Vol. 91, 093111, 2007.
doi:10.1063/1.2776875

16. Wang, , J., W. Zhou, and , "Nearfield beam shaping through tuning diffraction coupling angles," Journal of Computational and Theoretical Nanoscience, Vol. 7, No. 6, 1021-1024, 2010.
doi:10.1166/jctn.2010.1447

17. Fu, , Y. and X. Zhou, "Plasmonic lenses: A review," Plasmonics, Vol. 5, No. 3, 287-310, 2010.
doi:10.1007/s11468-010-9144-9

18. Liu, , Z., J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett., Vol. 5, No. 9, 1726-1729, 2005.
doi:10.1021/nl051013j

19. Yin, , L., V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett.,, Vol. 5, 1399-1402, 2005.
doi:10.1021/nl050723m

20. Fu, , Y. Q. and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett., Vol. 91, No. 6, 061124, 2007.
doi:10.1063/1.2769942

21. Fu, , Y., C. Du, W. Zhou, and L. E. N. Lim, "Nanopinholes-based optical superlens," Research Letters in Physics, Vol. 2008, 148505, 2008.

22. Zou, D. Q., "Beam adjustment with double subwavelength metal its surrounded by tapered dielectric gratings," Chin. Phys. Lett., Vol. 27, No. 1, 17801, 2010.
doi:10.1088/0256-307X/27/1/017801

23. Zhang, M., J. Du, H. Shi, S. Yin, L. Xia, B. Jia, M. Gu, and C. Du, "Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove," Optics Express, Vol. 18, No. 14, 14664-14670, 2010.
doi:10.1364/OE.18.014664

24. Cheng, , L., P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, "High e±cient far-¯eld nanofocusing with tunable focus under radial polarization illumination," Plasmonics,, Vol. 7, No. 1, 175-184, 2012.
doi:10.1007/s11468-011-9291-7

25. Lopez-Tejeira, F., F. Garcia-Vidal, and L. Martin-Moreno, "Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces," Phys. Rev. B,, Vol. 72, No. 16, 161405, 2005.
doi:10.1103/PhysRevB.72.161405

26. Nikitin, , A., F. Lopez-Tejeira, and L. Martin-Moreno, "Scattering of surface plasmon polaritons by one dimensional in homogeneities," Phys. Rev. B, Vol. 75, No. 3, 35129, 2007.
doi:10.1103/PhysRevB.75.035129

27. Yu, L., D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh,J. Liu, C. Yeh, and C. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B, Vol. 71, No. 4, 41405, 2005.
doi:10.1103/PhysRevB.71.041405

28. Lockyear, , M. J., A. P. Hibbins, and J. R. Sambles, "Surfacetopography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett., Vol. 84, 2040-2042, 2004.
doi:10.1063/1.1688001

29. Fu, , Y., W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," JOSA A,, Vol. 25, No. 1, 238-249, 2008.
doi:10.1364/JOSAA.25.000238

30. Fu, , Y. and W. Zhou, "Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing," J. Nanophoton., Vol. 3, No. 1, 033504, 2009.
doi:10.1117/1.3159299

31. Fox, M., Optical Properties of Solids, Oxford Univerity Press, 2001.

32. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

33. Youngworth, , K. and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Optics Express, Vol. 7, No. 2, 77-87, 2000.
doi:10.1364/OE.7.000077

34. Liu, , Y., D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, "Negative group velocity of surface plasmons on thin metallic films," Proc. SPIE, Vol. 6323, 63231M, 2006.
doi:10.1117/12.681492

35. Monti, , G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801