Vol. 137
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-26
A New Scheme for the Design of Balanced Frequency Tripler with Schottky Diodes
By
Progress In Electromagnetics Research, Vol. 137, 407-424, 2013
Abstract
We propose a balanced frequency tripler scheme for millimeter-wave and submillimeter-wave application, in which double-sided suspended stripline is adopted. Two arms of Schottky diodes are mounted on the upper side of the substrate, and the other two arms of diodes are mounted on the lower side. The diodes are DC biased without bypass chip capacitor, which is essential in the common used balanced tripler scheme. Furthermore, the numbers of the diodes are doubled as there are only two arms of diodes in the common balanced tripler scheme, and this will double the power handling capability of the tripler. A W-band frequency tripler is designed according to the proposed scheme with commercial Schottky Varistors. The output power is from 2.9 to 5.7 dBm at the frequencies from 89.7 to 94.8 GHz, with the conversion efficiency from 1.95% ~3.7%.
Citation
Jian Guo, Jie Xu, and Cheng Qian, "A New Scheme for the Design of Balanced Frequency Tripler with Schottky Diodes," Progress In Electromagnetics Research, Vol. 137, 407-424, 2013.
doi:10.2528/PIER13011706
References

1. Pearson, J. C., B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, "Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source," Review of Scientific Instruments, Vol. 82, No. 9, 1-9, 2011.
doi:10.1063/1.3617420

2. Zhao, M., Y. Fan, D. Wu, and J. Zhan, "The investigation of W-band microstrip integrated high order frequency multiplier based on the nonlinear model of avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
doi:10.2528/PIER08090702

3. Maestrini, A., "Frequency multipliers for local oscillators at THz frequencies," 4th ESA Workshop on Millimetre Wave Technology and Applications, 1-6, 2006.

4. Maestrini, A., J. S. Ward, J. J. Gill, H. S. Javadi, E. Schlecht, C. Tripon-Canseliet, G. Chattopadhyay, and I. Mehdi, "A 540-640-GHz high-efficiency four-anode frequency tripler," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2835-2843, 2005.
doi:10.1109/TMTT.2005.854174

5. Erickson, N. R., J. Tuovinen, B. J. Rizzi, and T. W. Crowe, "A balanced doubler using a planar diode array for 270 GHz," 5th International Symposium on Space Terahertz Technology, 409-413, 1994.

6. Maestrini, A., T. C. Charlotte, J. S.Ward, J. J. Gill, and I. Mehdi, "A high efficiency multiple-anode 260-340 GHz frequency tripler," 17th International Symposium on Space Terahertz Technology, 233-236, 2006.

7. Johansen, T. K. and V. Krozer, "A 38 to 44 GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type Marchand balun," rogress In Electromagnetics Research, Vol. 135, 317-330, 2013.

8. Wan, Q. and C. Wang, "A widebald CMOS current-mode down-conversion mixer for multi-standard receivers," Progress In Electromagnetics Research, Vol. 129, 421-437, 2012.

9. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, R. Camblor-Diaz, M. G. Fernnandez, F. Las-Heras, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.
doi:10.2528/PIER11051709

10. Guo, J., Z. Xu, C. Qian, and W.-B. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.

11. Zhan, M. Z., W. Zhao, and R.-M. Xu, "Design of millimeter-wave wideband mixer with a novel IF block," Progress In Electromagnetics Research C, Vol. 30, 41-52, 2012.

12. Zhan, M. Z., Q. Xu, W. Zhao, Y. Zhang, R.-M. Xu, and W. Lin, "Planar W-band mixer with a novel IF-block," Progress In Electromagnetics Research C, Vol. 21, 205-215, 2011.

13. Lee, Y.-C., C.-H. Liu, S.-H. Hung, C.-C. Su, and Y.-H. Wang, "A 20 - 31 GHz high image rejection ratio subharmonic mixer," Progress In Electromagnetics Research C, Vol. 27, 197-207, 2012.
doi:10.2528/PIERC12011115

14. Lai, Y.-A., C.-N. Chen, C.-C. Su, S.-H. Hung, C. L. Wu, and Y.-H. Wang, "A compact double-balanced star mixer with novel dual 180o hybrid," Progress In Electromagnetics Research C, Vol. 24, 147-159, 2011.
doi:10.2528/PIERC11080902

15. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator with distributed element resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
doi:10.2528/PIER07111701

16. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101

17. Zhang, H., J. Wang, and C. Tong, "Progress in theoretical design and numerical simulation of high power terahertz backward wave oscillator," PIERS Online, Vol. 4, No. 3, 311-315, 2008.
doi:10.2529/PIERS071001065701

18. Lin, M.-C. and P.-S. Lu, "An injection-locked millimeter wave oscillator based on field-emission cathodes," PIERS Online, Vol. 4, No. 3, 371-375, 2008.
doi:10.2529/PIERS070906183455

19. Benson, K. and M. A. Frerking, "Theoretical efficiency for triplers using real varister diodes at submillimeter wavelengths," IEEE MTT-S International Microwave Symposium Digest, 315-318, 1985.
doi:10.1109/MWSYM.1985.1131972

20. Chen, Z. and J. Xu, "Design and characterization of a W-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, 133-150, 2013.

21. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

22. Deng, J.-Y., L.-X. Guo, T.-Q. Fan, Z.-S. Wu, Y.-J. Hu, and J. H. Yang, "Wideband circularly polarized suspended patch antenna with indented edge and gap-coupled feed," Progress In Electromagnetics Research, Vol. 135, 151-159, 2013.

23. Ho, M.-H. and P.-F. Chen, "Suspended substrate stripline bandpass filters with source-load coupling structure using lumped and full-wave mixed approach," Progress In Electromagnetics Research, Vol. 122, 519-535, 2012.
doi:10.2528/PIER11102502

24. Siles, J. V., A. Maestrini, B. Alderman, S. Davies, H. Wang, J. Treuttel, E. Leclerc, T. Narhi, and C. Goldstein, "A single-waveguide in-phase power-combined frequency doubler at 190 GHz," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 6, 332-334, 2011.
doi:10.1109/LMWC.2011.2134080

25. Porterfield, D., "A 200 GHz broadband fixed-tuned planar doubler," Proceedings of the Tenth International Symposium on Space Terahertz Technology, 463, 1999.

26. Chiou, Y.-C. and J.-T. Kuo, "Planar multiband bandpass filter with multimode stepped impedance resonators," Progress In Electromagnetics Research, Vol. 114, 129-144, 2011.

27. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

28. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

29. Zhang, S., B. Zhang, and Y. Fan, "Design of a 114 GHz-135 GHz passive tripler," International Symposium on Signals Systems and Electronics, 1-3, 2010.

30. Tuovinen, J. and N. R. Erickson, "Analysis of a 170-GHz frequency doubler with an array of planar diodes," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 4, 962-968, 1995.
doi:10.1109/22.375261

31. Yang, T., Z. J. Xiang, W. Wu, Z. Q. Yang, and K. W. Qian, "Broad-band tripler of W-band," Journal of Infrared Millimeter Waves, Vol. 26, No. 3, 161-163, 2007.