Vol. 137
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-19
Recursive Implementation of Natural Frequency-Based Radar Detection Using the Lrt Scheme
By
Progress In Electromagnetics Research, Vol. 137, 219-237, 2013
Abstract
We address the performance analysis of the natural frequency-based radar target detection in this paper. We show how to calculate the detection performance recursively by making a polynomial approximation of the probability density function (PDF) of the standard normal distribution. Why we make a polynomial approximation of the PDF of the standard normal distribution is that the PDF of the standard normal distribution is not analytically integrable but that the polynomial is definitely analytically integrable, which makes it possible to calculate the detection performance without look-up table. The Taylor polynomial is used for an approximation of the PDF of the standard normal distribution. We derive the error of the approximation, the bound of the error of approximation, and the optimal polynomial approximation in the sense that the bound of the error of the approximation is minimized. We validate the derived expressions via numerical simulation.
Citation
Joon-Ho Lee, and So-Hee Jeong, "Recursive Implementation of Natural Frequency-Based Radar Detection Using the Lrt Scheme," Progress In Electromagnetics Research, Vol. 137, 219-237, 2013.
doi:10.2528/PIER13011701
References

1. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

2. Mooney, J. E., Z. Ding, and L. S. Riggs, "Performance analysis of a GLRT automated target discrimination scheme," IEEE Trans. Antennas and Propagation, Vol. 49, No. 12, 1827-1835, Dec. 2001.
doi:10.1109/8.982466

3. Cho, S.-W. and J.-H. Lee, "Effect of threshold value on the performance of natural frequency-based radar target recognition," Progress In Electromagnetics Research, Vol. 135, 527-562, 2013.

4. Lee, J.-H., S.-W. Cho, S.-H. Park, and K.-T. Kim, "Performance analysis of radar target recognition using natural frequency: Frequency domain approch," Progress In Electromagnetics Research, Vol. 132, 315-345, 2012.

5. Lee, J.-H. and H.-T. Kim, "Comments on extraction of the natural frequencies of a radar target from a measured response using E-pulse techniques," IEEE Trans. Antennas and Propagation, Vol. 53, No. 11, 3853-3855, Nov. 2005.

6. Lee, J.-H., I.-S. Choi, and H.-T. Kim, "Natural frequency based neural network approach to radar target recognition," IEEE Trans. Signal Processing, Vol. 51, No. 12, 3191-3197, Dec. 2003.
doi:10.1109/TSP.2003.818908

7. Lee, J.-H. and H.-T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 655-669, May 2005.
doi:10.1163/1569393053305062

8. Lee, J.-H. and H.-T. Kim, "Radar target recognition based on late time representation: Closed-form expression for criterion," IEEE Trans. Antennas and Propagation, Vol. 54, 2455-2462, Sep. 2006.
doi:10.1109/TAP.2006.880665

9. Lee, J.-H. and H.-T. Kim, "Radar target recognition using least squares estimate," Microwave and Optical Technology Letters, Vol. 30, 427-434, Sep. 2001.
doi:10.1002/mop.1335

10. Mooney, J. E., Z. Ding, and L. Riggs, "Performance analysis of a GLRT in late-time radar target detection," Progress In Electromagnetics Research, Vol. 24, 77-96, 1999.
doi:10.2528/PIER99012001

11. Chen, C. C. and L. Peters, "Buried unexploded ordnance identification via complex natural resonances," IEEE Trans. Antennas Propagat., Vol. 45, No. 11, 1645-1654, 1997.
doi:10.1109/8.650076

12. Lee, K.-H., C.-C. Chen, F. L. Teixeira, and R. Lee, "Modeling and characterization of geometrically complex UWB antennas using FDTD," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 1983-1991, 2004.
doi:10.1109/TAP.2004.832501

13. Chen, C. C., B. Higgins, K. O'Neil, and R. Detsch, "Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1221-1320, 2001.
doi:10.1109/36.927444

14. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 28, 75-94, 2011.

15. Le Marshall, N. W. D. and A. Z. Tirkel, "MIMO radar array for termite detection and imaging," Progress In Electromagnetics Research B, Vol. 28, 75-94, 2011.

16. Narayanan, R. M., M. C. Shastry, P.-H. Chen, and M. Levi, "Through-the-wall detection of stationary human targets using doppler radar," Progress In Electromagnetics Research B, Vol. 20, 147-166, 2010.
doi:10.2528/PIERB10022206

17. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Numerical modeling for ultra wideband radar breast cancer detection and classificatio," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011.

18. Wang, F.-F. and Y.-R. Zhang, "The support vector machine for dielectric target detection through a wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.

19. Liu, B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.

20. Lee, J.-H. and S.-H. Jeong, "Performance of natural frequency-based target detection in frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2426-2437, 2012.
doi:10.1080/09205071.2012.735789

21. Zhou, W., J.-T. Wang, H. W. Chen, and X. Li, "Signal model and moving target detection based on MIMO synthetic aperture radar," Progress In Electromagnetics Research, Vol. 131, 311-329, 2012.

22. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "Target detection in pulse-train MIMO radars applying ica algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206

23. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

24. Lee, J.-H. and H.-T. Kim, "Selecting sampling interval of transient response for the improved Prony method," IEEE Trans. Antennas and Propagation, Vol. 51, No. 1, 74-77, Jan. 2003.
doi:10.1109/TAP.2003.808551

25. Lee, J.-H., I.-S. Choi, and H.-T. Kim, "Natural frequency based neural network approach to radar target recognition," IEEE Trans. Signal Processing, Vol. 51, No. 12, 3191-3197, Dec. 2003.
doi:10.1109/TSP.2003.818908

26. Lee, J.-H. and H.-T. Kim, "Hybrid method for natural frequency extraction: Performance improvement using Newton-Raphson method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1043-1055, Aug. 2005.
doi:10.1163/156939305775526061

27. Cho, S.-W. and J.-H. Lee, "Efficient implementation of the Capon beamforming using the Levenberg-Marquardt scheme for two dimensional AOA estimation," Progress In Electromagnetics Research, Vol. 137, 19-34, 2013.

28. Lee, J.-H., S.-W. Cho, and I.-S. Choi, "Simple expressions of CEP and covariance matrix for localization using LOB measurements or circular trajectory," Electronics Express, Vol. 9, No. 14, 1221-1229, 2012.
doi:10.1587/elex.9.1221

29. Lee, J.-H., S.-W. Cho, and H.-S. Kim, "Newton-type method in spectrum estimation-based AOA estimation," Electronics Express, Vol. 9, No. 12, 1036-1043, 2012.
doi:10.1587/elex.9.1036

30. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. Pister, "Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

31. Lee, J.-H., H.-J. Kwon, and Y.-K. Jin, "Numerically efficient implementation of JADE ML algorithm," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-22, 1693-1704, 2008.
doi:10.1163/156939308786390256

32. Jeong, Y.-S. and J.-H. Lee, "Estimation of time delay using conventional beamforming based algorithm for UWB systems," Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2402, 2007.
doi:10.1163/156939307783134281

32. Burden, R. L. and J. D. Faires, Numerical Analysis, Cengage Learning, Boston, 2010.