Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-15
An Extended Frequency Scaling Algorithm for High Squint Spotlight Airborne SAR
By
Progress In Electromagnetics Research, Vol. 138, 41-63, 2013
Abstract
In high squint spotlight mode SAR, the coupling of the range and azimuth is very serious, which brings challenges to the imaging. In this paper, an extended frequency scaling algorithm is proposed, in which the range migration correction is divided into two steps. Firstly the range walk correction is implemented in 2D time domain. In the second step, the residual range migration is corrected by the frequency scaling and bulk shift operations. Though the second range compression does not consider the range space variance, the range compression is precise. In the azimuth compression, because of the range walk correction, the azimuth modulation frequency rate becomes dependent on the azimuth position. In order to equalize the azimuth modulation frequency rate, the azimuth nonlinear chirp scaling method is involved to remove the dependence. The simulation experiments verify the validity of the proposed algorithm. The comparison of the imaging quality among traditional frequency scaling algorithm, nonlinear frequency scaling algorithm and the proposed method indicates the proposed method is more suitable for the high squint spotlight SAR.
Citation
Weihua Zuo, Yiming Pi, and Rui Min, "An Extended Frequency Scaling Algorithm for High Squint Spotlight Airborne SAR," Progress In Electromagnetics Research, Vol. 138, 41-63, 2013.
doi:10.2528/PIER13010307
References

1. Carrara, , W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, , 1995.

2. Cantalloube, , H. and P. Dubois-Fernandez, "Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results," IEE Proc. Radar Sonar Navig., Vol. 152, 163-176, 2006.
doi:10.1049/ip-rsn:20045097

3. Mittermayer, J., B. Schettler, and M. Younis, "TerraSAR-X commissioning phase execution summary," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 649-659, 2010.
doi:10.1109/TGRS.2009.2026744

4. Schimpf, , H., A. Wahlen, and H. Essen, "High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps," Electron. Lett., Vol. 39, No. 18, 1346-1348, 2003.
doi:10.1049/el:20030829

5. Xu, J., Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar Sonar Navig.,, Vol. 6, No. 1, 2-8, 2012.
doi:10.1049/iet-rsn.2010.0375

6. Nie, , X., D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860-864, 2009.
doi:10.1109/LGRS.2009.2027212

7. Zhu, , D., S. Ye, and Z. Zhu, "Polar format algorithm using chirp scaling for spotlight sar image formation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 4, 1433-1448, 2008.
doi:10.1109/TAES.2008.4667720

8. Nie, , X., D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860- 864, 2009.
doi:10.1109/LGRS.2009.2027212

9. Shin, , H.-S. and J.-T. Lim, "Range migration algorithm for airborne squint mode spotlight SAR imaging," IET Radar Sonar Navig., Vol. 1, No. 1, 77-82, 2007.
doi:10.1049/iet-rsn:20060080

10. Shin, , H.-S. and J. T. Lim, "Omega-K algorithm for spaceborne spotlight SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 343-347, 2012.
doi:10.1109/LGRS.2011.2168380

11. Park, , S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using effcient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.

12. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling SAR data processing in stripmap, scanSAR and spotlight imaging modes," EUSAR2000, 749-752, Mar. 2000.

13. Lanari, , R., P. Franceschetti, M. Tesauro, and E. Sansosti, "Spotlight SAR image generation based on strip mode focusing techniques," Proc. IGARSS, 1761-1763, 1999.

14. Lanari, R., M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, 1993-2004, 2001.
doi:10.1109/36.951090

15. An, , D., X. Huang, T. Jin, and Z. Zhou, "Extended two-step focusing approach for squinted spotlight SAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2889-2990, 2012.
doi:10.1109/TGRS.2011.2174460

16. Mittermayer, J. and A. Moreira, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2198-2213, Sep. 1999.
doi:10.1109/36.789617

17. Zhu, , D., M. Shen, and Z. Zhu, "Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 6, 1579-88, 2008.
doi:10.1109/TGRS.2008.916468

18. Jin, , L. and X. Liu, "Nonlinear frequency scaling algorithm for high squint spotlight SAR data processing," EURASIP Journal on Advances in Signal Processing, Vol. 2008, 1-8, 2008.
doi:10.1155/2008/657081

19. Davidson, , G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 121-133, 1996.
doi:10.1109/7.481254

20. Hu, , C., T. Long, and Y. Tian, "An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR," Progress In Electromagnetics Research , Vol. 135, 481-513, 2013.

21. Sun, G. C., X. W. Jiang, M. D. Xing, Z. J. Qiao, Y. R. Wu, and Z. Bao, "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
doi:10.1109/TGRS.2010.2102040

22. An, , D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

23. Wong, , F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412

24. Cao, , Z. and L. Chen, "Security in application layer of radar sensor networks: Detect friends or foe," Security and Communication Networks, No. 1, 35-40, 2012.

25. Liao, , K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106